Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1
a: \(\Leftrightarrow x^3+4x^2+4x+\left(a-4\right)x^2+\left(4a-16\right)x+\left(4a-16\right)+\left(-4a+12\right)x-4a+12⋮x^2+4x+4\)
=>-4a+12=0
=>a=3
b: \(\Leftrightarrow x^3-2x^2-2x+2x^2-4x-4+\left(a+6\right)x+b+4⋮x^2-2x-2\)
=>a+6=0 và b+4=0
=>a=-6; b=-4
Câu a có số dư là a+12 mà đây là phép chia hết nên a+12=0 nnên a=-12. Câu b
Gọi thương là \(cx^2+dx+e\)
\(\left(cx^2+dx+e\right)\left(x^2-2x+2\right)=cx^4-2cx^3+2cx^2+dx^3-2dx^2+2dx+ex^2-2ex+2e\)
\(=cx^4+x^3\left(d-2c\right)+x^2\left(2c-2d+e\right)+x\left(2d-2e\right)+2e\)
Đồng nhất hệ số
\(\hept{\begin{cases}c=1;d-2c=1\Leftrightarrow d=3\\2d-2e=4\Leftrightarrow e=1;b=2e\Leftrightarrow b=2\\2c-2d+e=a\Leftrightarrow a=-3\end{cases}}\)
Vậy a=-3;b=2
Bài 1:
a: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
x^2+x-1 2x^3+7x^2+ax+b 2x+5 2x^3+2x^2-2x 5x^2+(a+2)x+b 5x^2+5x-5 (a-3)x+(b+5)
Để \(A\left(x\right)⋮B\left(x\right)\)thì \(\left(a-3\right)x+\left(b+5\right)=0\)
\(\Rightarrow\hept{\begin{cases}a-3=0\\b+5=0\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)