Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguyễn Lê Phước Thịnh20GP
Phạm Thị Diệu Huyền16GP
Vũ Minh Tuấn15GP
Phạm Lan Hương13GP
Trần Thanh Phương10GP
Trên con đường thành công không có dấu chân của kẻ lười biếng8GP
Phạm Minh Quang7GP
Chiyuki Fujito6GP
hellokoko6GP
Nguyễn Ngọc Lộc
Xin lỗi bạn, mình mới học lớp 7 thôi!!

1: Thay x=1 và y=0 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}1+a\cdot0=1\\a\cdot1+0=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1=1\left(đúng\right)\\a=2\end{matrix}\right.\)
=>a=2
2: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{a}\ne\dfrac{a}{1}\)
=>\(a^2\ne1\)
=>\(a\notin\left\{1;-1\right\}\)

Lời giải:
Dễ thấy hệ có bộ nghiệm \((x,y)=(0;0)\)
Ta cần tìm $a$ sao cho hpt không còn nghiệm nào ngoài $(0;0)$
Trừ 2 PT cho nhau:
\(y^2-x^2=(x^3-y^3)-4(x^2-y^2)+a(x-y)\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2)-4(x-y)(x+y)+a(x-y)+(x-y)(x+y)=0\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2-3x-3y+a)=0\)
Ta thấy TH \(x-y=0\) đã thỏa mãn bộ nghiệm \(x=y=0\), nên để hpt không có nghiệm nào khác \((0;0)\)
thì pt \(x^2+xy+y^2-3x-3y+a=0(*)\) phải vô nghiệm hoặc có chỉ có nghiệm \(x=y=0\)
+) \((*)\) vô nghiệm:
\(\Leftrightarrow \Delta< 0\)
\(\Leftrightarrow (y-3)^2-4(y^2-3y+a)< 0\)
\(\Leftrightarrow 4a> -3y^2+6y+9\) với mọi y
\(\Leftrightarrow 4a> \max(-3y^2+6y+9)\)
\(\Leftrightarrow 4a> \max [12-3(y-1)^2]\)\(\Leftrightarrow 4a>12\Leftrightarrow a>3\)
+) \((*)\) có nghiệm \(x=y=0\Rightarrow a=0\)
\((*)\) trở thành \(x^2+xy+y^2-3(x+y)=0\)
Thay \(x=0\) vào ta thấy pt còn nghiệm \(y=3\) (không thỏa mãn tính duy nhất) (loại)
Vậy \(a>3\) thỏa mãn. (1)
--------------------------------------------
Giờ ta quay lại TH $x=y$ để kiểm tra lại
Thay vào pt đầu tiên: \(x^2=x^3-4x^2+ax\Leftrightarrow x^3-5x^2+ax=0\)
\(\Leftrightarrow x(x^2-5x+a)=0\)
Để pt có nghiệm duy nhất \(x=0\) thì $x^2-5x+a=0$ vô nghiệm hoặc chỉ có nghiệm là $0$
TH chỉ có nghiệm là $0$ kéo theo \(a=0\Rightarrow x^2-5x=0\) còn có nghiệm $x=5$ (vô lý)
TH vô nghiệm \(\Rightarrow \Delta=25-4a <0\Leftrightarrow a> \frac{25}{4}\) (2)
Từ (1),(2) suy ra \(a>\frac{25}{4}\)

Để pt có nghiệm duy nhất \(\Leftrightarrow-6-a^2\ne0\Rightarrow a^2\ne-6\) (luôn đúng)
Vậy hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}6x+3ay=-12\\a^2x-3ay=5a\end{matrix}\right.\) \(\Rightarrow\left(a^2+6\right)x=5a-12\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5a-12}{a^2+6}\\y=\frac{-4a-10}{a^2+6}\end{matrix}\right.\)
\(x+y>1\Leftrightarrow\frac{5a-12}{a^2+6}+\frac{-4a-10}{a^2+6}>1\Leftrightarrow a-22>a^2+6\)
\(\Leftrightarrow a^2-a+28< 0\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\frac{111}{4}< 0\) (vô lý)
Vậy ko tồn tại a thỏa mãn
Để hpt có nghiệm duy nhất thì:
\(\dfrac{a}{1}\ne\dfrac{1}{a}\)
\(\Leftrightarrow a\ne\pm1\)
Vậy với \(a\ne\pm1\) thì hpt có nghiệm duy nhất.