K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì \(\dfrac{1}{1}\ne\dfrac{2}{-1}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x+2y=a+2\\x-y=4a-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y-x+y=a+2-4a+1\\x-y=4a-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3y=-3a+3\\x=4a-1+y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-a+1\\x=4a-1-a+1=3a\end{matrix}\right.\)

x<3y

=>3a<3(-a+1)

=>3a<-3a+3

=>6a<3

=>\(a< \dfrac{1}{2}\)

5 tháng 10 2021

\(HPT\Leftrightarrow\left\{{}\begin{matrix}2x-3y=2-m\\2x+4y=6m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3m+1\\7y=7m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2m=3m+1\\y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=m\end{matrix}\right.\\ x^2+y^2=10\Leftrightarrow m^2+2m+1+m^2=10\\ \Leftrightarrow2m^2+2m-9=0\\ \Delta=4+72=76\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-2-2\sqrt{19}}{4}=\dfrac{-1-\sqrt{19}}{2}\\m=\dfrac{-2+2\sqrt{19}}{4}=\dfrac{-1+\sqrt{19}}{2}\end{matrix}\right.\)

29 tháng 12 2023

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{2}{-4}=-\dfrac{1}{2}\)

=>\(m\ne-1\)

\(\left\{{}\begin{matrix}mx+2y=1\\2x-4y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+4y=2\\2x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m+2\right)=5\\2x-4y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{2m+2}\\4y=2x-3=\dfrac{10}{2m+2}-3=\dfrac{10-6m-6}{2m+2}=\dfrac{-6m+4}{2m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{2m+2}\\y=\dfrac{-6m+4}{8m+8}=\dfrac{-3m+2}{4m+4}\end{matrix}\right.\)

x-3y=7/2

=>\(\dfrac{5}{2m+2}-\dfrac{3\cdot\left(-3m+2\right)}{4m+4}=\dfrac{7}{2}\)

=>\(\dfrac{10+3\left(3m-2\right)}{4m+4}=\dfrac{7}{2}\)

=>\(\dfrac{10+9m-6}{4m+4}=\dfrac{7}{2}\)

=>\(\dfrac{9m+4}{4m+4}=\dfrac{7}{2}\)

=>7(4m+4)=2(9m+4)

=>28m+28=18m+8

=>10m=-20

=>m=-2(nhận)

18 tháng 1 2021

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

15 tháng 9 2018

Ta có

x + 2 y = m + 3 2 x − 3 y = m ⇔ 2 x + 4 y = 2 m + 6 2 x − 3 y = m ⇔ x + 2 y = m + 3 7 y = m + 6 ⇔ x = 5 m + 9 7 y = m + 6 7

Hệ phương trình có nghiệm duy nhất  ( x ;   y )   = 5 m + 9 7 ; m + 6 7  

Lại có x + y = −3 hay 5 m + 9 7 + m + 6 7 = − 3 ⇔ 5m + 9 + m + 6 = −21

⇔ 6m = −36 ⇔ m = −6

Vậy với m = −6 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y = −3

Đáp án: A

5 tháng 2 2022

a. Thay m = 1 ta được 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{1}{2}\ne-\dfrac{2}{3}\)*luôn đúng*

\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=m+3-\dfrac{2m+12}{7}=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\)

Ta có : \(\dfrac{m+6}{7}+\dfrac{5m+9}{7}=-3\Rightarrow6m+15=-21\Leftrightarrow m=-6\)

5 tháng 2 2022

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(a,Khi.m=1\Rightarrow\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\2\left(4-2y\right)-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\8-4y-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\7y=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\rightarrow\left(x,y\right)=\left(2,1\right)\)

\(b,\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+6\left(1\right)\\2x-3y=m\left(2\right)\end{matrix}\right.\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}7y=m+6\\x+2y=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Rightarrow\) HPT có no duy nhất 

\(\left(x,y\right)=\left(\dfrac{5m+9}{7};\dfrac{m+6}{7}\right)\)

\(x+y=-3\)

\(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=-3\)

\(\Leftrightarrow5m+9+m+6=-21\)

\(\Leftrightarrow6m=-36\Rightarrow m=-6\)

Với m = -6 thì hệ pt có no duy nhất TM x + y = -3

14 tháng 5 2021

`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`

14 tháng 5 2021

`a)m=2`

$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`