Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x25-x22)+(x22-x19)+(x19-x16)...+(x4-x) chia hết cho x2+x+1
hay x25-x chia hết cho x2+x+1
mà x2+x+1 chia hết cho x2+x+1
=> x25+x2+1 chia hết cho x2+x+1
2.a2(a2-a+2) là cp
Vì a2 là cp để a2(a2-a+2) là cp <=> a2-a+2 cũng là cp <=> 4(a2-a+2) là cp
Đặt 4(a2-a+2)=k2 (k tự nhiên)
<=> (2a-1)2+7=k
<=>7=(k-2a+1)(k+2a-1)=7.1=1.7=-1.(-7)=-7.(-1)
Kẻ bảng tự tìm nốt giá trị của a nhé
Gọi f( x ) = a2x3 + 3ax2 - 6x - 2a
g( x ) = x + 1
Cho g( x ) = 0
\(\Rightarrow\)x + 1 = 0
\(\Rightarrow\)x = - 1
\(\Leftrightarrow\)f( - 1 ) = a2( - 1 )3 + 3a( - 1 )2 - 6( - 1 ) - 2a
\(\Leftrightarrow\)f( - 1 ) = - a2 + 3a + 6 - 2a
Để f( x ) \(⋮\)g( x )
\(\Leftrightarrow\)- a2 + 3a + 6 - 2a = 0
\(\Rightarrow\)- ( 2a - 6 ) - ( a2 - 3a ) = 0
\(\Rightarrow\)- 2( a - 3 ) - a( a - 3 ) = 0
\(\Rightarrow\)( a - 3 )( - 2 - a ) = 0
Từ đó, ta sẽ có :
- a - 3 = 0\(\Rightarrow\)a = 3
- - 2 - a = 0 \(\Rightarrow\)- a = 2\(\Rightarrow\)a = - 2
Vậy : a = 3 hoặc a = - 2 thì a2x3 + 3ax2 - 6x - 2a \(⋮\)x + 1
Thực hiện phép chia đa thức cho đa thức:
Ta có: \(a^2x^3+3ax^2-6x-2a=\left(x+1\right)\left[a^2x^2+\left(3a-a^2\right)x+a^2-3a-6\right]-a^2+a+6\)
Đế a2x3 + 3ax2 - 6x - 2a chia hết cho x+1
=> \(-a^2+a+6=0\)
<=> ( a - 3 ) ( a + 2 ) = 0
<=> a = 3 hoặc a = - 2.
Vậy a = 3 hoặc a = - 2.
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2
=>a+8=0
=>a=-8
b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1
=>m-0,25=0
=>m=0,25