K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

SORY NHA MIK PHẢI ĐI NGỦ ĐÂY :<

7 tháng 11 2020

Định lí Bézout : Số dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)

Đặt f(x) = 3x4 - 2x3 + 2x2 - x + a 

      g(x) = x + 1

Áp dụng định lí Bézout ta có :

Số dư trong phép chia f(x) cho g(x) là f(-1)

f(-1) = 3.(-1)4 - 2.(-1)3 + 2.(-1)2 - (-1) + a

        = 3 + 2 + 2 + 1 + a

        = a + 8

Để f(x) chia hết cho g(x) thì dư phải bằng 0

tức là a + 8 = 0 => a = -8

Vậy với a = -8 thì ( 3x4 - 2x3 + 2x2 - x + a ) chia hết cho ( x + 1 )

22 tháng 10 2015

1-4x-2x^2=3-2(x^2+2x+1)=3-(x+1)^2 nhỏ hơn hoặc bằng 3. max(....)=3 khi x=-1

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

8 tháng 8 2016

1.a) đặt f(x)= 2x3 - 3x2 + x + a chia hết cho x + 2

nên x=-2 thì f(x)=0

thay x=-2 ta được : -30+a=0

=> a=30 thì 2x- 3x+ x + a chia hết cho x + 2

 

8 tháng 8 2016

làm tính chia đi số dư chính là a cần tìm đấy

16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

Câu 4: 

Để f(x) chia hết cho g(x) thì \(x^2+5x+a⋮x+1\)

\(\Leftrightarrow x^2+x+4x+4+a-4⋮x+1\)

=>a-4=0

hay a=4

Câu 5: 

Đêt f(x) chia hết cho g(x) thì \(2x^2+3x+a⋮x+2\)

\(\Leftrightarrow2x^2+4x-x-2+a+2⋮x+2\)

=>a+2=0

hay a=-2