\(x^{2016}+a\) chia hết cho x - 1. a = ...

có lời giải thì càng tốt nha...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a= -1 vì x2016 : (x-1) dư 1

(nắng có còn hờn ghen môi em

mưa có còn buồn trong mắt em

từ lúc đưa em về

lá biếc xa ngàn trùng- giải lao hát tý)

6 tháng 8 2016

+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3

=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)

+ Ta có: 5139 + 3951 + 12

...1 + 3950.39 + 12

...1 + (392)25.39 + 12

...1 + ...125.39 + 12

...1 + ...1.39 + 12

...1 + ...9 + 12

...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)

Từ (1) và (2) => 9.m + 3 = 10.n + 2

=> 9.m + 1 = 10.n

=> 9.m + 1 = 9.n + n

=> 9.m - 9.n = n - 1

=> 9.(m - n) = n - 1

=> n - 1 chia hết cho 9

=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2

                               = 90.n + 10 + 2

                               = 90.n + 12 chia 90 dư 12

=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12

6 tháng 8 2016

+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3

=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)

+ Ta có: 5139 + 3951 + 12

= ...1 + 3950.39 + 12

= ...1 + (392)25.39 + 12

= ...1 + ...125.39 + 12

= ...1 + ...1.39 + 12

= ...1 + ...9 + 12

= ...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)

Từ (1) và (2) => 9.m + 3 = 10.n + 2

=> 9.m + 1 = 10.n

=> 9.m + 1 = 9.n + n

=> 9.m - 9.n = n - 1

=> 9.(m - n) = n - 1

=> n - 1 chia hết cho 9

=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2

                               = 90.n + 10 + 2

                               = 90.n + 12 chia 90 dư 12

=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)

11 tháng 7 2016

a) \(-7x^2+10x-2016=-7\left(x^2-\frac{10x}{7}\right)-2016=-7\left(x^2-2.x.\frac{5}{7}+\frac{25}{49}\right)+\frac{25}{49}.7-2016=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)Vậy Max = \(-\frac{14087}{7}\Leftrightarrow x=\frac{5}{7}\)

b) \(\frac{x+5}{11}+\frac{x+2010}{6}\ge\frac{x-1}{2017}+\frac{x+6}{2010}\)

\(\Leftrightarrow\frac{x}{2011}+\frac{x}{6}+\frac{5}{2011}+335\ge\frac{x}{2017}+\frac{x}{2010}-\frac{1}{2017}+\frac{1}{335}\)

\(\Leftrightarrow x\left(\frac{1}{2011}+\frac{1}{6}-\frac{1}{2017}-\frac{1}{2010}\right)\ge\frac{1}{335}-\frac{1}{2017}-\frac{5}{2011}-335\)

\(\Leftrightarrow\frac{677389259}{4076467935}x\ge\frac{-455205582048}{1358822645}\) \(\Leftrightarrow x\ge-2016\)

Câu b) còn cách khác nữa bạn nhé. Mình làm cách này "xù" quá ^^

16 tháng 12 2023

1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)

Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ

Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ

 a2+ b= 2234 không chia hết cho 5

Giả sử cả a2, b2 đều không chia hết cho 5

-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)

Mà a2+ b= 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai

Giả sử a=5 -> a2= 25

b2= 2209

b2= 472

-> b=47

                    Vậy hai số cần tìm là 5 và 47

 

16 tháng 10 2016

36 ban ak

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

6 tháng 1 2020

a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)

Ta thấy \(x^2\ge0\forall x\)

=> \(x^2+4\ge4\forall x\)

=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)

=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)

\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)