Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Thao Chuot - Toán lớp 7 - Học toán với OnlineMath
Bạn xem bài làm ở link này nhé!
\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{a+b+c}{b+c+a+b+c+a}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}\)\(=\frac{1}{2}\)
Vậy A =1/2
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
Ta có: \(\frac{1}{a^2}=\frac{1}{bc}\Rightarrow a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\left(1\right)\)
\(\frac{1}{b^2}=\frac{1}{ac}\Rightarrow b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2}{2}=1\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\)
\(\frac{b}{c}=1\Rightarrow b=c\)
\(\Rightarrow a=b=c\)
\(\Rightarrow a+b+c=3a=2\)
\(a=\frac{2}{3}\)
\(\Rightarrow b=c=\frac{2}{3}\)
Vậy \(a=b=c=\frac{2}{3}\)
Tham khảo nhé~
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
Theo t/ c dãy tỉ số= nhau:
a/b+c=b/a+c=c/a+b=a+b+c/(a+a)+(b+b)+(c+c)=a+b+c/2a+2b+2c=a+b+c/2.(a+b+c)=1/2
Vậy A=1/2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{2}\)