K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E

a) CMR: AE=BC 

b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??

23 giờ trước (21:37)

Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\)\(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\)\(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Bài toán phần a)

Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).

Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:

\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:

\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:

\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)

tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.

Bài toán phần b)

Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:

\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).

Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:

\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)

với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.

Kết luận: Chúng ta đã chứng minh được rằng:

  • a) \(x^{3} + 1\) chia hết cho \(y + 1\),
  • b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
7 tháng 10 2021

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

21 tháng 2 2016

Ta chứng minh: 4a chia 6 dư 4(1)

-Với a=1=>4a =41=4 chia 6 dư 4(thỏa mãn)

Giả sử (1) luôn đúng với mọi n=k=>4k chia 6 dư 4, ta càn chứng minh (1) cũng luôn đúng với mọi n=k+1, chứng minh: : 4k+1 chia 6 dư 4

Ta có: 4k chia 6 dư 4

=>4k đồng dư với 4(mod 6)

=>4k.4 đồng dư với 4.4(mod 6)

=>4k+1 đồng dư với 16(mod 6)

=>4k+1 đồng dư với 4(mod 6)

=>4k+1 chia 6 dư 4

=>thỏa mãn

=>Phép quy nạp đã được chứng minh=>ĐPCM

=>4a chia 6 dư 4

=>4a-4 chia hết cho 6

Lại có: a+1, b+2007 chia hết cho 6

=>a+1+ b+2007 chia hết cho 6

=>a+ b+2008 chia hết cho 6

=>a+b+4+2004 chia hết cho 6

mà 2004 chia hết cho 6

=>a+ b+4 chia hết cho 6

mà 4a-4 chia hết cho 6

=>4a-4+a+b+4 chia hết cho 6

=>4a+a+b chia hết cho 6

Vậy 4a+a+b chia hết cho 6

21 tháng 2 2016

Do a+1 và b+2007chia hết cho 6. Do đó a,b:lẻ. Thật vậy nếu a,b chẵn

\(\Rightarrow\) a+1,b+2007/chia hết cho 2

\(\Rightarrow\)a+1,b+2007/chia hết cho 6

Điều nói trên trái với giả thiết.

Vậy a,b luôn lẻ.

Do đó:41+MỘTchia hết+2.b

Ta có:một + 1,b+chia hết 2007

\(\Rightarrow\)a+1+b+2007 chia hết cho 6

\(\Rightarrow\)(một +b+1)chia hết+3.2007

\(\Rightarrow\)a+b+1chia hết cho 3.\(\leftrightarrow\)

Ta thấy41+Một+b=(41-1)+(một +b+1)

Lại có:41-1chia hết (4-1)=3\(\leftrightarrow\)(*)

Từ\(\leftrightarrow\)và(*),Suy ra:41+Một +b chia hết+3

Mặt khác(2;3)=1. Do đó: 41+Một+b chia hết cho 6 

8 tháng 8 2016

ta có : \(2^{33}\equiv8\)(mod31)

\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)

\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)

\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)

=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)

vậy số dư pháp chia trên là 2