Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x = 2018
=> x + 1 = 2019
\(x^5-2019.x^4+2019.x^3-2019.x^2+2019.x-2020\)
\(=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-2020\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-2020\)
\(=x-2020\)
Thay x = 2018 vào biểu thức , ta được
\(2018-2020=-2\)
Vậy giá trị biểu thức là -2
a) \(A=-|x-2|\le0;\forall x\)
\(\Rightarrow-|x-2|+2019\le0+2019;\forall x\)
Hay \(A\le2019;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{max}=2019\Leftrightarrow x=2\)
b) \(B=-2x^2+5x+3\)
\(=-2\left(x^2-\frac{5}{2}x-\frac{3}{2}\right)\)
\(=-2\left(x^2-2.x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}-\frac{3}{2}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{49}{8}\)
Vì \(-2\left(x-\frac{5}{4}\right)^2\le0;\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2+\frac{49}{8}\le0+\frac{49}{8};\forall x\)
Hay \(B\le\frac{49}{8};\forall x\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-\frac{5}{4}\right)^2=0\)
\(\Leftrightarrow x=\frac{5}{4}\)
Vậy \(B_{max}=\frac{49}{8}\Leftrightarrow x=\frac{5}{4}\)
c) \(-x^2-y^2+2x+8y+2028\)
\(=-\left(x^2+y^2-2x-8y-2028\right)\)
\(=-\left[\left(x^2-2x+1\right)+\left(y^2-8y+16\right)-2045\right]\)
\(=-\left(x-1\right)^2-\left(y-4\right)^2+2045\)
Vì \(\hept{\begin{cases}-\left(x-1\right)^2\le0;\forall x,y\\-\left(y-4\right)^2\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-\left(x-1\right)^2-\left(y-4\right)^2\le0;\forall x,y\)
\(\Rightarrow-\left(x-1\right)^2-\left(y-4\right)^2+2045\le0+2045;\forall x,y\)
Hay \(C\le2045;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}}\)
Vậy \(C_{max}=2045\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}}\)
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
Ta có A < \(\frac{2}{3^2-1^2}+\frac{2}{5^2-1^2}+...+\frac{2}{2019^2-1^2}\)
Tới đây ở mẫu số ta có công thức :
a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
<=> \(A< \frac{2}{\left(3-1\right)\left(3+1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+....+\frac{2}{\left(2019-1\right)\left(2019+1\right)}\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}< \frac{2019}{2020}=B\)
=> A < B