Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: cạnh nào cũng nhỏ hơn 60
câu 2: số nguyên dương nào chẳng được
cách khác :
Giả sử a ; b ; c đều không chia hết cho 3 ; khi đó a^3 ; b^3 ; c^3 đều không chia hết cho 27
=> a^3 ; b^3 ; c^3 đều khác 27x với x thuộc Z
=> a^3 + b^3 + c^3 khác 27x + 27x + 27x = 9^2 x (trái với gt)
=> đpcm
Giả sử a<0,vì abc>0 nên bc<0.
Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0
=>a(b+c)>0,mà a<0 nên b+c<0
=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
C2: Giả sử a<0,vì abc>0 nên bc<0.
Mặt khác thì ab+ac+bc>0
<=>a(b+c)>-bc>0
=>a(b+c)>0,mà a<0 nên b+c<0
=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
C1: Giả sử a ; b ; c đều không chia hết cho 3 ; khi đó a^3 ; b^3 ; c^3 đều không chia hết cho 27
=> a^3 ; b^3 ; c^3 đều khác 27x với x thuộc Z
=> a^3 + b^3 + c^3 khác 27x + 27x + 27x = 9^2 x (trái với gt)
=> đpcm
abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c thuộc N*
Giả sử : Cả 3 số a,b,c đều âm , suy ra abc < 0 ( trái gt )
=> Có ít nhất một số dương trong 3 số a,b,c
Do a,b,c bình đẳng, không mất tính tổng quát :
Giả sử : \(a>0\), mà \(abc>0,\) suy ra \(bc>0\)
\(TH1:b< 0;c< 0\), suy ra : \(b+c< 0\)
Mà : \(a+b+c>0\left(gt\right)\) \(\Rightarrow b+c>-a\)
Do : \(b+c< 0\), suy ra : \(\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow ab+ac+bc< -b^2-2bc-c^2+bc\)
\(\Rightarrow ab+bc+ac< -b^2-bc-c^2=-\left(b^2+bc+c^2\right)\)
Do : \(b^2+c^2\ge0;bc>0\)
\(\Rightarrow b^2+bc+c^2>0\)
\(\Rightarrow-\left(b^2+bc+c^2\right)< 0\)
Mà : \(ab+bc+ac< -\left(b^2+bc+c^2\right)\)
\(\Rightarrow ab+bc+ac< -\left(b^2+bc+c^2\right)< 0\)
\(\Rightarrow ab+bc+ac< 0\)( trái giả thiết : ab + bc + ac > 0 )
Suy ra : b <0, c< 0 ( vô lý )
\(\Rightarrow b,c>0\Rightarrow a,b,c>0\Rightarrow a,b,c\inℕ^∗\left(đpcm\right)\)
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+\left(2ab+2bc+2ac\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)
Vì \(a^2+b^2+c^2\ge0\)
Nên \(-\left(2ab+2bc+2ac\right)\ge0\)
\(\Rightarrow\)\(2ab+2bc+2ac\le0\)
\(\Rightarrow\)\(2\left(ab+bc+ac\right)\le0\)
\(\Rightarrow\)\(ab+bc+ac\le0\) ( đpcm )
Công thức lớp 8 chứ ko phải lớp 6 nhé
Chúc bạn học tốt ~
cm bđt ab+bc+ca \(\le\)\(\frac{\left(a+b+c\right)^2}{3}\)(biến đổi tương đương )
\(\Rightarrow\)ab+bc+ca \(\le\frac{0^2}{3}=0\)-đpcm