Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{9}.3^{a+1}-4.3^a=-90\)
\(\rightarrow\frac{2}{9}.3^a.3-4.3^a=-90\)
\(\rightarrow\frac{2}{3}.3^a-4.3^a=-90\)
\(\rightarrow3^a.\left(\frac{2}{3}-4\right)=-90\)
\(\rightarrow3^a.\left(\frac{-10}{3}\right)=-90\)
\(\rightarrow3^a=-90:\left(\frac{-10}{3}\right)\)
\(\rightarrow3^a=27\)
\(\rightarrow a=3\)
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
câu B bạn viết thiếu đề bài
bạn viết là (1/38-1)x(1/37).....(1/2-1)
bạn viết thiếu số này
(1/38-1)x(1/37-1)x(1/36)........(1/2-1)
bạn viết thiếu chỗ mik ghạch chân
Vì tam giác ABC Vuông tại A
=> AB2 + AC2 = BC2 ( Định Lý Py-ta-go)
=> a2 + (a+1)2 =(a+2)2
=> a2 + a2 + 2a+1 = a2 + 2.2.a+ 22
=>a2 + 1 = 2a+4
=> a2 = 2a +3
=>a.(a-2)= 3
=> a thuộc Ư(3)={3;1}
(+) a=1 => a-2=3 =>a=5 (loại)
(+) a=3 => a-2=1 =>a=3 (Thỏa mãn)
Vậy a=3
Áp dụng định lý pytag cho tam giác vuông ABC
Ta có
\(AB^2+AC^2=BC^2\)
<=>\(a^2+\left(a+1\right)^2=\left(a+2\right)^2\)
<=>\(a^2+a^2+2a+1=a^2+4a+4\)
<=>\(a^2-2x-3=0\)
<=>\(\left(a+1\right)\left(a-3\right)=0\)
<=>\(a=-1;a=3\)
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito
Ta có (a + b) : 2 = 24
=> a + b = 48
=> a + a + 26 = 48 (Vì b = a + 26)
=> 2.a = 22
=> a = 11
Vậy a = 11
Ta có :
\(\left(a+b\right):2=24\)
\(\Rightarrow a+b=48\left(1\right)\)
\(a+26=b\)
\(\Rightarrow b-a=26\left(2\right)\)
Từ (1) và (2) \(\Rightarrow a=\frac{48-26}{2}=11\)
\(\Rightarrow b=26+11=37\)
\(\)