K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
4
18 tháng 8 2020
Em chưa học đồng dư nhưng chắc cũng làm giống bài trong link này . Anh xem thử ạ : https://h.vn/hoi-dap/question/386876.html
8 tháng 1
\(5^{2009}=5^{2000}\cdot5^9\)
Ta có: \(5^{2000}\equiv1\) (\(mod\) \(10000\))
\(5^9\equiv3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2000}\cdot5^9\equiv1\cdot3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2009}\equiv3125\) (\(mod\) \(10000\))
Vậy \(4\) chữ số tận cùng của \(5^{2009}\) là \(3125\)
PM
0
HQ
1
QB
1