Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số tự nhiên liên tiếp là a-1,a,a+1 (a thuộc N )
Theo bài ra có :
a.(a+1) - a.(a-1) = 52
=> a^2 + a - a^2 + a = 52
=> 2a = 52
=> a = 26
=> Ba số cần tìm là 25,26,27
1. Gọi ba số tự nhiên liên tiếp đó là a, a+1 , a+2 ( a thuộc N )
Theo đề bài ta có : ( a + 1 )( a + 2 ) - a( a + 1 ) = 25
<=> a2 + 3a + 2 - a2 - a = 25
<=> 2a = 25
<=> a = 25/2 ( đến đây => sai đề :)) )
2. Gọi ba số tự nhiên chẵn liên tiếp đó là 2a, 2a+2, 2a+4 ( a thuộc N )
Theo đề bài ta có : ( 2a + 2 )2 - 2a( 2a + 4 ) = 1/3.2a
<=> 4a2 + 8a + 4 - 4a2 - 8a = 2/3a
<=> 4 = 2/3a
<=> a = 6
=> 2a = 12
2a + 2 = 14
2a + 4 = 16
Vậy ba số cần tìm là 12 ; 14 ; 16
a)
Gọi x - 1 là số thứ nhất ( ĐK : \(x-1\in N\) )
x là số thứ hai
x + 1 là số thứ ba
Theo đề , ta có :
\(x\left(x-1\right)+25=x\left(x+1\right)\)
\(x^2-x+25=x^2+x\)
\(2x=-25\)
\(x=-\frac{25}{2}\) ( loại vì x \(\notin\) N )
b)
Gọi x - 2 là số thứ nhất ( ĐK : \(x-2\in N;x-2⋮2\) )
x là số thứ hai
x + 2 là số thứ ba
Theo đề ; ta có :
\(x^2-\left(x+2\right)\left(x-2\right)=\frac{1}{3}\left(x-2\right)\)
\(x^2-\left(x^2-2^2\right)=\frac{1}{3}\left(x-2\right)\)
\(x^2-x^2+4=\frac{1}{3}\left(x-2\right)\)
\(\frac{1}{3}\left(x-2\right)=4\)
\(x-2=12\)
\(x=14\) ( nhận )
Vậy số thứ hai là 14
Số thứ nhất là 14 - 2 = 12
Số thứ ba là 14 + 2 = 16
ta cho 3 so do la x,9
(x+2)*(x+4)-(x*x+2)=192
=>xx+x4+2x+2*4-xx-x2=192
=>x^2+4x+2x+8-x^2-2x=192
=>4x+8=192
=>4x =192-8=184
=> x =184/4=46
=>x=46,x+2=48,x+4=50
vay 3 so can tim la 46,48,50
gọi 4 số đó là: a;a+1;a+2;a+3 (a\(\ge\)0)
vì tích của 2 số đầu nhỏ hơn tich của 2 số sau 38 nên ta có phương trình:
(a+2)(a+3)-a(a+1)=38
<=>a2+5a+6-a2-a=38
<=>4a+6=38
<=>4a=32
<=>a=32:4
<=>a=8
vậy 4 số đó là 8;9;10;11
gọi 4 số đó lần lượt là x; x+1; x+2; x+3
theo đề bài ta có phương trình
(x+2)*(x+3) - (x+1)*x=38
GPT ta tìm được x=8
vậy 4 số cần tìm là 8;9;10;11
Ta có nhận xét: tích của hai số tự nhiên liên tiếp chia cho \(3\)chỉ có thể có số dư là \(0\)hoặc \(2\).
Chứng minh:
Giả sử tích đó là \(a\left(a+1\right)\).
Nếu \(a=3k\)hoặc \(a=3k+2\)thì tích \(a\left(a+1\right)⋮3\).
Nếu \(a=3k+1\)thì \(a\left(a+1\right)=\left(3k+1\right)\left(3k+2\right)=9k^2+9k+2\)chia cho \(3\)dư \(2\).
Do đó ta có đpcm.
Mà ta có \(3^{50}+1\)chia cho \(3\)dư \(1\)do đó \(3^{50}+1\)không thể là tích của hai số tự nhiên liên tiếp.
gọi 3 stn liên tiếp đó là a;a+1;a+2
\(\Rightarrow a\left(a+1\right)+a\left(a+2\right)+\left(a+1\right)\left(a+2\right)=242\)
\(\Rightarrow a^2+a+a^2+2a+a^2+2a+a+2=3a^2+6a+2=242\)
\(\Rightarrow3a^2+6a+3=243\Rightarrow3\left(a^2+2a+1\right)=3\left(a+1\right)^2=243\Rightarrow\left(a+1\right)^2=81\)
\(\Rightarrow a+1=9\Rightarrow a=8\Rightarrow a+2=8+2=10\)
vậy 3 số đó là 8;9;10
Gọi 3 số tự nhiên liên tiếp đó là a, a+1, a+2. Ta có:
a(a+1) + (a+1)(a+2) = 74
<=> (a+1)(a+a+2) = 74
<=> (a+1)(2a+2) = 74
<=> 2(a+1)^2 = 74
<=> (a+1)^2 = 37.
=> ko có số thỏa mãn
Gọi ba số tự nhiên liên tiếp đó là a+2 ; a+1 ; a (Điều kiện \(a\in N\))
Theo bài ra ta có phương trình:
(a+2)(a+1)-50 = (a+1)a
\(\Leftrightarrow\)a2+3a+2-50 = a2+a
\(\Leftrightarrow\)2a=48
\(\Leftrightarrow\)a=24 (Thỏa mãn điều kiện)
\(\Leftrightarrow\hept{\begin{cases}a+1=25\\a+2=26\end{cases}}\)
Vậy ba số tự nhiên liên tiếp đó là 26 ; 25 ; 24
bn erw3t23q cho mk hs why có phương trinh đó đc hk