K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Đặt biểu thức trên là A

Áp dụng bđt cosi:

\(x^5+\frac{1}{x}\ge2x^2\)

\(y^5+\frac{1}{y}\ge2y^2\)

\(z^5+\frac{1}{y}\ge2y^2\)

\(=>A\ge2.\left(x^2+y^2+z^2\right)\)

\(=>A\ge\frac{2.3.\left(a^2+b^2+c^2\right)}{3}\ge\frac{2.\left(a^2+b^2+c^2\right)}{3}=6\)(bđt bunhiacopxki)

Dấu "="xảy ra khi x = y = z = 1

Câu hỏi của hieu nguyen - Toán lớp 9 - Học toán với OnlineMath

21 tháng 2 2020

Chứng minh:



2/ Cho  nguyên dương. Chứng minh rằng:

21 tháng 2 2020

link mik nha

5 tháng 5 2020

??????

16 tháng 12 2016

Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)

Ta có

\(x^2+y^3+z^4=90\)

\(\Rightarrow z^4< 90\)

Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được

Hay z nhận các giá trị là 1, 2, 3

Với z = 3 thì

\(x^2+y^3=90-3^4=9\)

Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2

Thế vô lần lược tìm được: y = 2, x = 1

Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại

Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)

Mình chỉ hướng dẫn bạn cách làm thôi nhé.

17 tháng 2 2020

Vì x,y,z là các số nguyên dg nên x,y,z >/1 

Ta có : x+y+z= 90

Suy ra z4 < 90

Ta thấy rằng {4= 256 > 90 , 3= 81 < 90 nên z ko thể >4

Hay z nhận các gt là 1,2,3

Với z=3 thì :

x2