K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Từ ba đẳng thức ta có

3x+3y+3z=12

=>x+y+z=4

<=>x+2y-y+z=4

<=>5-y+z=4

<=>z-y=-1

Mà y+2z=-7

Cộng vế theo vế ta được

3z=-8

=>z=-8/3

=>y=...

=>x=...

(Phần dưới tự tính cho não nó thông)

\(\hept{\begin{cases}x+2y=5\\y+2z=-7\\z+2x=14\end{cases}}\)

\(\Leftrightarrow x+y+z+2y+2z+2x=5-7+14\)

\(\Leftrightarrow x+y+z+2\left(x+y+z\right)=12\)

\(\Leftrightarrow3\left(x+y+z\right)=12\)

\(\Leftrightarrow x+y+z=4\)

\(\Leftrightarrow\hept{\begin{cases}x+2y=5\\y+2z=-7\\z+2x=14\end{cases}\Leftrightarrow\hept{\begin{cases}4-y-z+2y=5\\y+2z=-7\\z+8-2y-2z=14\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y-z=5\\y+2z=-7\\2y+z=-6\end{cases}}\)

21 tháng 7 2017

haha mk được đấy

tuyến nguyễn biết thì trả lời đi

21 tháng 12 2022

ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`

`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`

Áp dụng t/c dãy tỉ số bằng nhau ta có:

`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`

`=>x/2=3=>x=3.2=6`

`=>y/3=3=>x=3.3=9`

`=>z/4=3=>z=3.4=12`

3x/5=2y/7=2z/3

=>x/5/3=y/7/2=z/3/2

=>x/10=y/21=z/9=k

=>x=10k; y=21k; z=9k

2x^2-y^2-z^2=-160

=>2*100k^2-441k^2-81k^2=-160

=>k^2=80/161

TH1: k=căn 80/161

\(x=10\sqrt{\dfrac{80}{161}};y=21\sqrt{\dfrac{80}{161}};z=9\sqrt{\dfrac{80}{161}}\)

TH2: \(k=-\sqrt{\dfrac{80}{161}}\)

=>\(x=-10\sqrt{\dfrac{80}{161}};y=-21\sqrt{\dfrac{80}{161}};z=-9\sqrt{\dfrac{80}{161}}\)

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)