Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 1 + 5 + 6 = 12 ; 2 + 3 + 7 = 12
Vậy 1 + 5 + 6 = 2 + 3 + 7
b) Ta có:\(1^2\)\(+5^2\)\(+6^2\)\(=1+25+36=62\)
\(2^2\)\(+4^2\)\(+7^2\)\(=4+16+49=62\)
\(=>1^2\)\(+5^2\)\(+6^2\)\(=2^2\)\(+3^2\)\(+7^2\)
c) Ta có 1 + 6 +8 = 15; 2 + 4 + 9 = 15
Vậy 1 + 6 + 8 = 2 + 4 + 9
\(d,1^2\)\(+6^2\)\(+8^2\)\(=1+36+64=101\)
\(2^2\)\(+4^2\)\(+9^2\)\(=4+16+81=101\)
\(1^2\)\(+6^2\)\(+8^2\)\(=2^2\)\(+4^2\)\(+9^2\)
1b)\(\frac{7}{19}x\frac{8}{11}+\frac{3}{11}:\frac{19}{7}-\frac{2}{-19}=\frac{7}{19}x\frac{8}{11}+\frac{3}{11}x\frac{7}{19}+\frac{2}{19}=\left(\frac{8}{11}+\frac{3}{11}\right)\frac{7}{19}+\frac{2}{19}=\frac{7}{19}+\frac{2}{19}=\frac{9}{19}\)
c)\(4\left(\frac{4}{9}+\frac{7}{11}-\frac{4}{9}\right)=4\frac{7}{11}\)
từ rồi làm tiếp
a: \(=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}=4-\dfrac{4}{7}=\dfrac{24}{7}\)
b: \(=\dfrac{11}{2}\cdot\dfrac{15}{4}=\dfrac{165}{8}\)
c: \(=10+\dfrac{2}{9}+2+\dfrac{3}{5}-6-\dfrac{2}{9}=6+\dfrac{3}{5}=\dfrac{33}{5}\)
d: \(=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}=5+\dfrac{7}{11}=\dfrac{62}{11}\)
Bài 2:
a: 2/5=14/35
3/7=15/35
b: -3/4=-9/12
-7/-12=7/12
c: 5/9=60/108
-11/-12=11/12=99/108
d: -4/7=-36/63
8/9=56/63
-10/21=-30/63
Bài 2:
a: 2/5=14/35
3/7=15/35
b: -3/4=-9/12
-7/-12=7/12
c: 5/9=60/108
-11/-12=11/12=99/108
d: -4/7=-36/63
8/9=56/63
-10/21=-30/63
\(a,11\dfrac{3}{4}-\left(6\dfrac{5}{6}-4\dfrac{1}{2}\right)+1\dfrac{2}{3}\)
\(=\dfrac{47}{4}-\left(\dfrac{41}{6}-\dfrac{9}{2}\right)+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\left(\dfrac{41}{6}-\dfrac{27}{6}\right)+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\dfrac{14}{6}+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\dfrac{7}{3}+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\left(\dfrac{7}{3}+\dfrac{5}{3}\right)\)
\(=\dfrac{47}{4}-\dfrac{12}{3}\)
\(=\dfrac{47}{4}-4\)
\(=\dfrac{47}{4}-\dfrac{16}{4}\)
\(=\dfrac{31}{4}\)
c) Ta có: \(4\dfrac{3}{7}:\left(\dfrac{7}{5}\cdot4\dfrac{3}{7}\right)\)
\(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}\)
\(=\dfrac{5}{7}\)
a, \(\Leftrightarrow2x^2=72\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm6\)
Vậy ...
\(b,\Leftrightarrow\dfrac{3}{5}x-0,75=2\dfrac{4}{5}.\dfrac{3}{7}=\dfrac{6}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{6}{5}+0,75=\dfrac{39}{20}\)
\(\Leftrightarrow x=\dfrac{39}{20}:\dfrac{3}{5}=\dfrac{13}{4}\)
Vậy ...
\(c,\Leftrightarrow2x=1\dfrac{5}{6}.\dfrac{6}{11}-\dfrac{3}{10}=\dfrac{7}{10}\)
\(\Leftrightarrow x=\dfrac{7}{10}:2=\dfrac{7}{20}\)
Vậy ...
\(d,\Leftrightarrow\dfrac{1}{x-7\dfrac{1}{3}}=1.5:2\dfrac{1}{4}=\dfrac{2}{3}\)
\(\Leftrightarrow x-7\dfrac{1}{3}=\dfrac{3}{2}\)
\(\Leftrightarrow x=\dfrac{3}{2}+7\dfrac{1}{3}=\dfrac{53}{6}\)
Vậy ...
a) 2x2 - 72 = 0
\(\Rightarrow\) 2x2 = 72
\(\Rightarrow\) x2 = 36 = 62 = (- 6)2
\(\Rightarrow\) x = 6 hoặc x = - 6
Vậy x = 6 hoặc x = - 6
b) (\(\dfrac{3}{5}\)x - 0,75) : \(\dfrac{3}{7}\) = \(2\dfrac{4}{5}\)
\(\Rightarrow\) (\(\dfrac{3}{5}\)x - 0,75) : \(\dfrac{3}{7}\) = \(\dfrac{14}{5}\)
\(\Rightarrow\) \(\dfrac{3}{5}\)x - \(\dfrac{3}{4}\) = \(\dfrac{6}{5}\)
\(\Rightarrow\) \(\dfrac{3}{5}\)x = \(\dfrac{39}{20}\)
\(\Rightarrow\) x = \(\dfrac{13}{4}\)
Vậy x = \(\dfrac{13}{4}\)
1: \(=\dfrac{272-168+186}{30}\cdot\dfrac{7}{9}=\dfrac{29}{3}\cdot\dfrac{7}{9}=\dfrac{203}{27}\)
2: \(=\dfrac{9-55}{33}\cdot\dfrac{6-5}{8}-\dfrac{4}{5}\cdot\dfrac{1}{24}=\dfrac{-4}{3}\cdot\dfrac{1}{8}-\dfrac{1}{30}=\dfrac{-1}{6}-\dfrac{1}{30}=\dfrac{-6}{30}=-\dfrac{1}{5}\)
3: \(=\dfrac{7}{3}\left(\dfrac{6}{25}+\dfrac{19}{25}\right)=\dfrac{7}{3}\cdot1=\dfrac{7}{3}\)
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}