Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(\frac{1}{3}\left(x+y\right)=3\left(x-y\right)=\frac{3}{200}xy=\frac{x+y}{3}=\frac{x-y}{\frac{1}{3}}=\frac{2x}{3+\frac{1}{3}}=\frac{2x}{\frac{10}{3}}=\frac{2y}{3-\frac{1}{3}}=\frac{2y}{\frac{8}{3}}\)
\(\frac{3}{200}xy=\frac{2x}{\frac{10}{3}}\Rightarrow y=40\left(x\ne0\right)\)
\(\frac{3}{200}xy=\frac{2y}{\frac{8}{3}}\Rightarrow x=50\left(y\ne0\right)\)
Vậy 2 số đó là 50 và 40.
Vì y tỉ lệ ngịch với x theo hệ số tỉ lệ là \(\frac{1}{2}\)\(\Rightarrow xy=\frac{1}{2}\)(1)
Vì x tỉ lệ thuận với z theo hệ số tỉ lệ là \(\frac{2}{3}\)\(\Rightarrow x=\frac{2}{3}z\)(2)
They (2) vào (1) ta được \(\frac{2}{3}.z.y=\frac{1}{2}\)\(\Rightarrow yz=\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)
Vậy y tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{3}{4}\)
1)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)
2)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
xy=10 <=> 2k.5k=10
<=>10k2=10
<=> k=1
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
3)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)