Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
Giải:
1. Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
+) \(\frac{x}{2}=-3\Rightarrow x=-6\)
+) \(\frac{y}{5}=-3\Rightarrow y=-15\)
Vậy x = -6
y = -15
2. Ta có:
\(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}=\frac{x}{3}=\frac{y}{7}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
+) \(\frac{x}{3}=-4\Rightarrow x=-12\)
+) \(\frac{y}{7}=-4\Rightarrow y=-28\)
Vậy x = -12
y = -28
1/ \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=-\frac{21}{7}=-3\)
\(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{x}{5}=-3\Rightarrow x=-15\)
2/ \(7x=3y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)
\(\frac{x}{7}=4\Rightarrow x=28\)
\(\frac{y}{3}=4\Rightarrow y=12\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Theo đề, ta có: \(\frac{x}{12}=\frac{y}{8}\)và \(x-y=16\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{12}=\frac{y}{8}=\frac{x-y}{12-8}=\frac{16}{4}=4\)
=> x = 4.12 = 48; y = 4.8 = 32
Vậy x = 48; y = 32