Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mình với !!!!!!!
Tìm 2 số hữu tỉ x,y biết :
x - 2y = 2(x +y ) và x - y =\(\dfrac{x}{y}\) (y ≠ 0 )
\(x-2y=2x+2y\\ \Rightarrow x=-4y\left(1\right)\\ \Rightarrow\dfrac{x}{y}=-4\\ \Rightarrow x-y=-4\Rightarrow x=-4+y\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow-4+y=-4y\\ \Rightarrow-5y=-4\Rightarrow y=\dfrac{4}{5}\\ \Rightarrow x=-4\cdot\dfrac{4}{5}=-\dfrac{16}{5}\)
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
x-2y+y=0
x-3y=0
3y=x
Thay 3y=x vào x-2y+y=0 ta có:
3y-2y+y=0
y+y=0
2y=0
y=0
mà 3y=x =>x=3.0=0
Vậy x=0 và y=0 thì x-2y+y=0
x - 2y + y = 0
x - y = 0
=> x = y
=>x = y và x , y thuộc Z = {.... ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; ....}