Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 3 số cần tìm là x<y<z
=> y=x+1; z=x+2
Theo đề bài
xy+yz+xz=242
=> x(x+1)+(x+1)(x+2)+x(x+2)=242
<=> x2+x+x2+3x+2+x2+2x=242
<=>3x2+6x-240=0
Giải PT bậc 2 tìm được x từ đó suy ra y và z
Lời giải:
Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3)
Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$
$\Leftrightarrow 4n^2+4n+8=4a^2+4a$
$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$
$\Leftrightarrow 2=(a-n)(a+n+1)$
Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:
$a+n+1=2; a-n=1$
$\Rightarrow n=0$ (tm)
Gọi số tự nhiên đầu tiên là x (x ∈ N*)
=> số tự nhiên thứ 2 là x + 1
Tích bằng 240 => x . (x + 1) = 240
-> x2 + x - 240 = 0
-> x = 15 (tm) hoặc x = 16 (loại)
Vậy 2 số tự nhiên đó là 15 và 16
24,10