Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: a ≥ b ( a,b ∈ N )
ƯCLN ( a, b) = 16
⟹ a chia hết cho 16 ⟹ a = 16.m
⟹ b chia hết cho 16 ⟹ b = 16. n
(m, n là thương; m,n ∈ N, m ≥ n)
ƯCLN(m,n) = 1
⟹ a . b = ƯCLN.BCNN
mà a = 16. m
b = 16. n
Thay số: 16 . m . 16 . n = 16 . 240
16. m . 16. n = 3840
256. m. n = 3840
⟹ m. n = 3840 : 256 = 15
Ta có bảng sau :
m | ... | ... | ... |
n | ... | ... | ... |
a | ... | ... | ... |
b | ... | ... | ... |
⟹ Vậy (a,b) ∈ { (... , ...) ; (... , ....)}
a. (a,b)=(1,7),(2,6),(3,5),(4,4), (5,3),(6,2), (7,1), (0,8), (8,0)
b.(a,b)=(6,36),(12,18),(18,12),(36,6)
Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath
Nhớ xem và !
a, 24 và 10
b, 6 và 30
c, 6 và 36
d, <không có trường hợp nào>
e, 36 và 6
Chúc bạn học giỏi !
<Lưu ý : Bạn xem lại câu d>
+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm
---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)
Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b
Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1
Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1
\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)
---> Nhân 6 hết lên là ra kết quả cuối cùng.
Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1
Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)
\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong
Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1
\(\Rightarrow6x.6y=216\Rightarrow xy=6\)
\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha
Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)
Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.
\(\Rightarrow3x.3y=180\Rightarrow xy=20\)
\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!