K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2019

540:5=18 nha

học tốt nhá

và đổi k nha

22 tháng 5 2019

ình trả lời nhầm sang câu khác .xin lỗi nha

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

20 tháng 12 2020

\(p^2+3pq+q^2=m^2\left(m\in N^{\text{*}}\right)\)

\(\Leftrightarrow pq+\left(p+q\right)^2=m^2\)

\(\Leftrightarrow pq=\left(m-p-q\right)\left(m+p+q\right)\)

TH1: \(\left\{{}\begin{matrix}m+p+q=pq\\m-p-q=1\end{matrix}\right.\)

\(\Rightarrow2p+2q-pq+1=0\)

\(\Leftrightarrow\left(p-2\right)\left(q-2\right)=5=1.5\)

\(\Leftrightarrow\left(p;q\right)\in\left\{\left(3;7\right);\left(7;3\right)\right\}\)

Thử lại ta được \(\left(p;q\right)\in\left\{\left(3;7\right);\left(7;3\right)\right\}\)

TH2: \(\left\{{}\begin{matrix}m+p+q=p\\m-p-q=q\end{matrix}\right.\Leftrightarrow3q+p=0\)

\(\Rightarrow\) Không tồn tại p, q thỏa mãn

TH3: \(\left\{{}\begin{matrix}m+p+q=q\\m-p-q=p\end{matrix}\right.\Leftrightarrow3p+q=0\)

\(\Rightarrow\) Không tồn tại p, q thỏa mãn

Vậy \(\left(p;q\right)\in\left\{\left(3;7\right);\left(7;3\right)\right\}\)

20 tháng 12 2020

p,q bình đẳng nên giả sử p>=q để giải gọn hơn nha bạn

 

9 tháng 2 2021

Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)

\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)

\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)

\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)

Xong chắc xét các TH với p,q là số nguyên tố