\(\frac{a}{b}=\frac{2}{3}\)và a+b=10

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

a/b = 2/3  <=> a/2 = b/3 

t/c của dãy tỉ số bằng nhau

11 tháng 12 2016

bn bị nhầm rồi mình chỉ hỏi a và b thôi

Bài 1 :

Theo bài ra ta có : \(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)

Áp dụng t/c dãy tỉ số ''='' nhau ta có 

\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{10}{5}=2\)

\(\Leftrightarrow\frac{a}{2}=2\Leftrightarrow a=4\)

\(\Leftrightarrow\frac{b}{3}=2\Leftrightarrow b=6\)

Bài 2 : 

Tìm khó quá cj thử x2;x3 ko ra rồi )): 

3 tháng 8 2017

Bài 1:suy ra 5*(44-x)=3*(x-12)

                 220-5x=3x-36

                 -5x-3x=-36-220

                 -8x      =-256

                   x=32

Bài 2 :Đặt a/3=b/4=k

   suy ra a=3k ; b=4k

Ta có a*b=48

suy ra 3k*4k=48

         12k =48

         k=4

suy ra a=3*4=12

         b=4*4 =16 

Bài 3: áp dụng tính chất dãy số bằng nhau ta được 

    a+b+c+d/3+5+7+9 = 12/24=0,5

suy ra a=1,5;   b=2,5;    c=3,5;          d=4,

10 tháng 3 2022

phiền quá đi

3 tháng 8 2018

1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)

2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)

\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)

3 tháng 8 2018

1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5

a2 =5
b3 =5
c4 =5
a=10
b=15
c=20

2. Ta có:a2 =b3 ⇒a10 =b15 

b5 =c4 ⇒b15 =c12 

⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7

a10 =−7
b15 =−7
c12 =−7
a=−70
b=−105
c=−84
15 tháng 3 2019

Ta có: \(\frac{a}{b}=\frac{3}{5}\)

\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)

\(\Rightarrow\frac{a^2}{9}=\frac{b^2}{25}\)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^2}{9}=\frac{b^2}{25}=\frac{a^2+b^2}{9+25}=\frac{136}{34}=4\)

\(\Rightarrow\frac{a^2}{9}=4\Rightarrow a=6\)

      \(\frac{b^2}{25}=4\Rightarrow b=10\)

\(\Rightarrow\frac{a}{b}=\frac{6}{10}=\frac{3}{5}\)

Vậy\(\frac{a}{b}=\frac{3}{5}\)

20 tháng 3 2019

ta có:\(\frac{a}{b}=\frac{3}{5}\)

\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{5}=k\)

\(\Rightarrow\)\(a=3k,b=5k\)

khi đó

\(a^2+b^2=136\)

\(\Rightarrow\)\(\left(3k\right)^2+\left(5k\right)^2=136\)

\(\Rightarrow\)\(9k^2+25k^2=136\)

\(\Rightarrow\)\(34k^2=136\)

\(\Rightarrow\)\(k^2=4\)

\(\Rightarrow\)\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

với  \(k=2\)\(\Rightarrow\)\(x=6,y=10\)

với  \(k=-2\)\(\Rightarrow\)\(x=-6,y=-10\)

vậy     x=6, y=10   hoặc   x=-6, y=-10

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

13 tháng 4 2017

\(\frac{4}{6}< \frac{a}{b}< \frac{5}{6}\)

=> a/b \(\in\) {\(\Phi\) }

5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n