Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=7+7^2+7^3+...............+7^{4k}\) (\(k\in N;k\ge1\) ) [có \(4k\) số hạng]
\(S=\left(7^{4k}+7^{4k-1}+7^{4k-2}+7^{4k-3}\right)+.............+\left(7^8+7^7+7^6+7^5\right)+\left(7^4+7^3+7^2+7\right)\) ( có \(k\) nhóm)
\(S=7^{4k-3}\left(7^3+7^2+7+1\right)+..........+7^5\left(7^3+7^2+7+1\right)+7\left(7^3+7^2+7+1\right)\)
\(S=7^{4k-3}.400+..............+7^5.400+7.400\)
\(\Rightarrow S⋮100\) [ \(do\) \(400⋮100\)]
\(\Rightarrow\) 2 chữ số tận cùng của \(S\) là \(00\)
Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:
Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath
Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này
Bài1.432^2019
=(432^4)^504*432^3
=(...6)^504*432^3
=(...6)*(...8)
=(...8)
=>tận cùng của 4322019 =8
Ta có :...2 mũ 4=.....6
Suy ra:432^2019=...2^4*504+3
=>...6^504*...2^3
=....6*...8
=...8
Chữ số tận cùng của 72^4n+1thì mk ko bt
Nhưng chữ số tận cùng của 62019 thì bằng 6 nha :)))
Hok tốt
a) \(x⋮9;15< x\le80\)
\(\Rightarrow x\in B\left(9\right)\)
\(B\left(9\right)=\left\{0;9;18;27;...;81;90;...\right\}\)
Mà \(15< x\le80\)
\(\Rightarrow x\in\left\{18;27;36;...;72\right\}\)
b) Mình nghĩ đề bài nên đổi thành: \(17-x⋮x+5\)
17 = 22 - 5
Ta có;
\(\left[22-\left(5+x\right)\right]⋮x+5\)
Mà \(5+x⋮x+5\)
\(\Rightarrow22⋮x+5\)
\(\Rightarrow x+5\inƯ\left(22\right)\)
Th1: x + 5 = 1 => loại ( Nếu đề bài là x thuộc N)
Th2: x + 5 = 2 => loại ( ___________________)
Th3: x + 5 = 11
x = 11 - 5
x = 6
Th4: x + 5 = 22
x = 22 - 5
x = 17
Vậy \(x\in\left\{17;6\right\}\)
c) Hihi mình k bt
d) x2 + 2x = 80
=> x.x + 2.x =80
=> x(x+2) = 80
Phân tích 80 ra thừa số nguyên tố ta được
80 = 2.2.2.2.5
= 8 . 10
x và x + 2 là 2 số cách nhau 2 đơn vị
=> x = 8
Chỗ nào chưa "thông" inbox nha ( Đầu óc k đen tối đâu)
bn ko lm bài 3 ak cái bài mà chứng minh S chia hết cho 50 đó
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
a) \(4+x=\frac{x+1}{5}\)
\(5.\left(4+x\right)=x+1\)
\(20+5.x=x+1\)
\(5.x-x=1-20\)
4.x = -19
x = -19/4
2) \(\frac{7}{x-1}=\frac{x}{8}\)
\(x.\left(x-1\right)=7.8\) ( x; x- 1 là 2 số tự nhiên liên tiếp)
=> x = 8
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)