K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

a) \(11^9+12^9+13^9+14^9+15^9+16^9\)

\(=11^{4.2}.11+12^{4.2}.12+13^{4.2}.13+14^{4.2}.14+15^9+16^9\)

\(=...1.11+...6.12+...1.13+...6.14+...5+...6\)

\(=...1+...2+...3+...4+...5+...6\)

\(=...1\)

Vậy biểu thức trên có chũ số tận cùng là 1

17 tháng 8 2019

b) \(25^7+26^7+27^7+28^7+29^7+29^7+30^7+31^7\)

\(=...5+...6+27^4.27^3+28^4.28^3+29^4.29^3+29^4.29^3+...0+...1\)

\(=...5+...6+...3+...8+...9+...9+...0+...1\)

\(=...1\)

Vậy biểu thức trên có chữ số tận cùng là 1

Ta có:\(9^7+3^{13}=\left(9^2\right)^3.9+\left(3^4\right)^3.3=\overline{...1}.9+\overline{...1}.3=\overline{...9}+\overline{...3}=\overline{...2}\)

        Vậy tổng trên có chứ số tận cùng là 2

10 tháng 8 2020

\(A=9^7+3^{13}\)

\(A=3^{14}+3^{13}\)

\(A=\left(3^4\right)^3.3^2+\left(3^4\right)^3.3\)

\(A=\left(3^4\right)^3.9+\left(3^4\right)^3.3\)

Do \(3^4\)luôn có chữ số tận cùng = 1

=> A có tận cùng là 1 số có tận cùng là 9 + 1 số có tận cùng là 3 

=> A có chữ số tận cùng là 2.

24 tháng 10 2020

a.Theo đề ta có:

   4^5^6^7

=4^5^(...6)          (vì 6 khi lũy thừa lên thì tận cùng không đổi)

=4^(...5)              (vì 5 khi lũy thừa lên thì tận cùng không đổi)

=(...4)                  (vì 4 khi lũy thừa một số mũ lẻ thì tận cùng không đổi)

  Vậy 4^5^6^7 có tận cùng là 4

b.

   Ta có:

    9 nếu lũy thừa một số mũ lẻ thì tận cùng của nó sẽ là 9.

    Áp dụng vào bài, ta có:

   9^9^9^9

= 9^9^(...9)

= 9^(...9)

= (...9)

   Vậy 9^9^9^9 có tận cùng là 9.

  (Nhớ cho mình đúng nha)

24 tháng 10 2020

ok bạn