\(\frac{3n+2}{n}\) có giá trị là một số nguyên

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Để 3n+2/n co giá trị là số nguyên 

=> 3n+2 chia hết cho n

=>( 3n +2)-n chia hết cho n 

=> (3n+2)-3n chia hết cho n

=> 3n+2 -3n chia hết cho n

=> 2 chia hết cho n

=> n thuộc ước của 2

Vậy n có thể bằng -1;-2;1;2 

14 tháng 3 2017

Để A nguyên thì 3n + 2 chia jeets cho n

=> 2 chia hết cho n

=> n thuộc Ư(2) = {-2;-1;1;2}

NM
10 tháng 5 2021

Ta có 

\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay

\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)

10 tháng 5 2021

Để A có  giá trị nguyên

<=> 3n + 4 ⋮  n - 1

=> ( 3n - 3 ) + 7 ⋮  n - 1

=> 3 . ( n - 1 ) + 7 ⋮  n - 1

vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1 

=> n - 1 ∈  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-11-1-77
n20-68

mọi giá trị n đều thuộc z (chọn)

 Vậy x  ∈ { - 6 ; 0 ; 2 ; 8 }

4 tháng 7 2019

Ta có: B = \(\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)

Để B \(\in\)Z <=> 1 \(⋮\)n + 1 <=> n + 1 \(\in\)Ư(1) = {1; -1}

Với: +) n + 1 = 1  => n = 1 - 1 = 0

    +)n + 1 = -1    => n = -1 - 1 = -2

Vậy ...

4 tháng 7 2019

Để \(B\inℤ\)

=> \(3n+2⋮n+1\)

=> \(3n+3-1⋮n+1\)

=> \(3\left(n+1\right)-1⋮n+1\)

Ta có : Vì \(3n+1⋮n+1\)

  => \(-1⋮n+1\)

  => \(n+1\inƯ\left(-1\right)\)

  => \(n+1\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp :

\(n+1\)\(1\)\(-1\)
\(n\)\(0\)\(-2\)

Vậy \(B\inℤ\Leftrightarrow n\in\left\{0;-2\right\}\)

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}

:D

26 tháng 2 2017

Do A có giá trị nguyên

\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)

Mà  \(n-1⋮n-1\)

\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+2-3n+3⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)

Xét \(n-1=-1\Rightarrow n=-4\)

\(n-1=-5\Rightarrow n=0\)

\(n-1=5\Rightarrow n=6\)

\(n-1=1\Rightarrow n=2\)

Vậy ...

26 tháng 2 2017

A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}

Ta có: n - 1 = 1 => n = 2

          n - 1 = -1 => n = 0

          n - 1 = 5 => n = 6

          n - 1 = -5 => n = -4

Vậy n = {2;0;6;-4}

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

2 tháng 8 2015

=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1

=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1

\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)

=>     n - 1 = 1                   =>     n = 1 + 1 = 2

         n - 1 = -1                  =>     n = -1 + 1 = 0

         n - 1 = 3                   =>     n = 3 + 1 = 4

         n - 1 = -3                  =>     n = -3 + 1 = -2

 

=>               \(n\in\left\{-2;0;2;4\right\}\)

12 tháng 2 2020

a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)

A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }

b) Thiếu điều kiện n là số nguyên dương.

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)

\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)

TH1: b > a 

=> b - a > 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

TH2: b <  a 

=> b - a < 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)

=> \(\frac{a+n}{b+n}< \frac{a}{b}\)

TH1: b = a 

=> b - a = 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)

=> \(\frac{a+n}{b+n}=\frac{a}{b}\)

Kết luận:...

12 tháng 2 2020

a)Để A nguyên thì (3n+2)chia hết  cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}

b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh