Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
ta có abcd chia hết cho 3 và 5 nên
d phải là tận cùng bằng 5 hoặc 0
a+b+c+d phải chia hết cho 3
từ đó ta rút ra có 2 số chia hết cho 5 là 8765 và 3210 nhưng vì 8765 ko chia hết cho 3 nên
số cần tìm là 3210
Ta có:
abcd chia hết cho 3 và 5 nên d phải là tận cùng bằng 5 hoặc 0
⇒a+b+c+d phải chia hết cho 3
từ đó ta rút ra có 2 số chia hết cho 5 là 8765 và 3210 nhưng vì 8765 không chia hết cho 3
⇒ số đó là 3210
Có 4 cách chia:
Cách chia bi nhiều túi nhất là cách 4,ta được 6 túi ,
Lần lượt chia đều bi đỏ vào 6 túi;
48:6= 8 (viên mỗi túi)
Chia đều bi xanh vào 6 túi;
30 :6=5 (viên mỗi túi)
Chia đều bi vàng vào 6 túi;
66:6=11 (viên mỗi túi)
Tổng cộng số viên bi trong mỗi túi ;
8+5+11=24 (viên mỗi túi)
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
1. A={0;7;14;21;28}
2. B={0;10;20;30;40}
1.
5 phần tử là 5 số nhỏ nhất là bội của 7
\(B\left(7\right)=\left\{0;7;14;21;28\right\}\)
2.
5 phần tử là 5 số nhỏ nhất là bội của 10
\(B\left(10\right)=\left\{0;10;20;30;40\right\}\)
ghjkllkjhjkl;lkjhgjklkjhgglkjhgk;lkjhglkjhgfbnmlkjhgfdfghjkoiuy654wsxcvbnml[p098765rdcvbnklp098765rfvbnm,;ơp09876t5rdcvbnmklo987yt
4j48hnh4y5j4h84y5484hu5j8rm74srky448dj48jd48dtju44tku8m4m48mu48t4m48mhhmm64nbdmi fkcmnhkymkutj65.5kl62.26khv62k62,y62m2du525y5yk55ky65ku5d1tm5151uy51yy51f1u51fyu51u,ỳ,yu51ufy,4141,iyu,4141,yu41ymm441mu41uymu41ymu41m41m4141ymu41mu41mu41mm151mm151mu15ymu1muy41myu41myu41muy41ymu41ymu4ymuym4hyusejkhl;kợpbowighhfjkmeslgrdthflhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhllllllllllllllllkbn zdgoknmz 2nxf41fxnh651hf651fhm651fm651fhm651fhm651hm5166fhm651f51fhm61gjm51jmg51,kc51jc,g51jm51
mx51
jy565';liuytrefghjklkjuytrfghjkl;';lkijuhygyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyytttttttttttttttttttttttttttrewdfghjkl;ưlkjuytreaasdfghjkl;'77]ôpiuytrfghjkl;lkjhgfdszxcvbhnjklkjhgfdscvbnjkl;lkjhgf lkjhgvbnmk,l.;l,kmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn jnjjjjjjjjjjjjj hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 8596859685296850968351525122162983465154545456591346195094846846598455461953561845579463177649163466598288188499
(9; 7) \(\in\)Ư (abcd) => 63 \(\in\)Ư(abcd)
B(63) = {63, 126, 189, ...,1008, 1071 ...}
1008 là bội nhỏ nhất có 4 cữ số
=> abcd = 1008