Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
a) \(n-4⋮n-1\)
ta có \(n-1⋮n-1\)
mà \(n-4⋮n-1\)
\(\Rightarrow n-4-\left(n-1\right)⋮n-1\)
\(\Rightarrow n-4-n+1\) \(⋮n-1\)
\(\Rightarrow-3\) \(⋮n-1\)
\(\Rightarrow n-1\in\text{Ư}_{\left(-3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)
lập bảng giá trị
\(n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(2\) | \(0\) | \(4\) | \(-2\) |
vậy \(n\in\text{ }\left\{2;0;4;-2\right\}\)
a) n - 4 \(⋮\)n - 1
Ta có : n - 4 = (n - 1) - 3
Do n - 1 \(⋮\)n - 1
Để (n - 1) - 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
Với : n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -5
Vậy n = {2; 0 ; 4 ; -5} thì n - 4 \(⋮\)n - 1
\(C=2^2+4^2+...+2010^2\)
\(=2\left(1+1\right)+4\left(3+1\right)+...+2010\left(2009+1\right)\)
\(=2+1.2+4+3.4+...+2010+2009.2010\)\
\(=\left(2+4+...+2010\right)+\left(1.2+3.4+...+2009.2010\right)\)
Đặt A = 2+4+...+2010 = \(\frac{\left(2010+2\right).1005}{2}=1011030\)
Đặt B=1.2+3.4+...+2009.2010
3B=1.2.3+3.4.3+...+2009.2010.3
3B=1.2(3-0)+3.4(5-2)+...+2009.2010(2011-2008)
3B=1.2.3-0.1.2+3.4.5-2.3.4+...+2009.2010.2011-2008.2009.2010
3B=2009.2010.2011
B=\(\frac{2009.2010.2011}{3}=2706866330\)
Thay A và B vào C ta có:
\(C=1011030+2706866330=2707877360\)
B=1.2+2.3+...+2010.2011
3B=1.2.3+2.3.3+...+2010.2011.3
3B=1.2.(3-0)+2.3.(4-1)+...+2010.2011.(2012-2009)
3B=1.2.3-0.1.2+2.3.4-1.2.3+...+2010.2011.2012-2009.2010.2011
3B=(1.2.3+2.3.4+...+2010.2011.2012)-(0.1.2+1.2.3+...+2009.2010.2011)
3B=2010.2011.2012-0.1.2
3B=2010.2011.2012
B=\(\frac{2010.2011.2012}{3}=2710908440\)
a)
A= (-m+n-p)-(-m-n-p)
A= -m+n-p+m+n+p
A= (-m+m) +(n+n) + (-p+p)
A= 0+2n+0
A = 2n
Bài 1:
A = (-m + n - p) - (-m - n - p)
A = -m + n - p + m + n + p
A = (-m + m) + (n + n) - (p - p)
A = 2n
Với n = -1 => A = 2(-1) = -2
Bài 2:
A = (-2a + 3b - 4c) - (-2a -3b - 4c)
A = -2a + 3b - 4c + 2a + 3b + 4c
A = (-2a + 2a) + (3b + 3b) - (4c - 4c)
A = 6b
Với b = -1 => A = 6(-1) = -6
Bài 3:
a) A = (a + b) - (a - b) + (a - c) - (a + c)
A= a + b - a + b + a - c - a - c
A = (a - a + a - a) + (b + b) - (c + c)
A = 2(b - c)
b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
B = a + b - c + a - b + c - b - c + a - a + b + c
B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)
B = 2a
a, \(5-\left(\frac{a}{b}+\frac{1}{2}\right)=2\frac{1}{3}\) => \(\frac{a}{b}+\frac{1}{2}=5-2\frac{1}{3}\) => \(\frac{a}{b}+\frac{1}{2}=\frac{8}{3}\) => \(\frac{a}{b}=\frac{8}{3}-\frac{1}{2}\) => \(\frac{a}{b}=\frac{13}{6}\)
b, \((\frac{3}{4}+2\frac{1}{2}):\frac{3}{5-3}=\left(\frac{3}{4}+\frac{5}{4}\right):\frac{3}{5}-1=\frac{9}{4}:\frac{-2}{5}=\frac{-45}{8}\)
a, 5-(\(\frac{a}{b}\)+\(\frac{1}{2}\))=2\(\frac{1}{3}\)
<=>5-\(\frac{a}{b}-\frac{1}{2}\)=\(\frac{7}{3}\)
<=>\(\frac{a}{b}=5-\frac{1}{2}-\frac{7}{3}\)
<=>\(\frac{a}{b}=\frac{13}{6}\)
b,(\(\frac{3}{4}\)+2\(\frac{1}{2}\)):\(\frac{3}{5}\)-3
=(\(\frac{3}{4}\)+\(\frac{5}{2}\)).\(\frac{5}{3}\)-3
=\(\frac{23}{4}\).\(\frac{5}{3}\)-3
=\(\frac{115}{12}\)-3
=\(\frac{115-36}{12}\)
=\(\frac{79}{12}\)
Vì tích A có lẻ thừa số âm là 2011 => Tích A mang dấu âm
Mà số hạng của tích này đều có cơ số bằng ( - 1 )
=> A = - 1