K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

- Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Phương trình tiếp tuyến tại điểm có tọa độ (1;3 ) là:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Ta có: d giao Ox tại Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2) , giao Oy tại B(0; 5) khi đó d tạo với hai trục tọa độ tam giác vuông OAB vuông tại O

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Diện tích tam giác vuông OAB là: 

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn D

Tham khảo:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình tiếp tuyến tại M(x0; y0)M(x0; y0) là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra diện tích tam giác OAB là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 12 2019

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến Δ của  C m  tại điểm có hoành độ  x 0   =   2 là: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Suy ra diện tích tam giác OAB là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Theo giả thiết bài toán ta suy ra:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn A.

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây : - Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1)  - Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo...
Đọc tiếp

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây :

- Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1) 

- Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo cách trên, kí hiệu là (2) (H2)

- Bước 3 : Với 4 tam giác vuông cân mầu trắng như trong hình 2, ta lại tạo được 4 hình vuông với mầu xám theo cách trên (H3)

- ..........

- Bước n : Ở bước này ta có \(2^{n-1}\) hình vuông với mầu sám được tạo thành theo cách trên, kí hiệu là (n)

a) Gọi \(u_n\) là tổng diện tích của tất cả các hình vuông mới được tạo thành ở bước thứ n.

Chứng minh rằng :

               \(u_n=\dfrac{1}{2^{n+1}}\)

b) Gọi \(S_n\) là tổng diện tích của tất cả các hình vuông mầu xám có được sau n bước. Quan sát hình vẽ để dự đoán giới hạn của \(S_n\) khi \(n\rightarrow+\infty\). Chứng minh dự đoán đó ?

1
NV
12 tháng 4 2019

\(y'=\frac{-1}{\left(x-1\right)^2}\), gọi \(M\left(a;\frac{1}{a-1}\right)\)

Phương trình tiếp tuyến d qua M:

\(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{1}{a-1}\)

Gọi giao điểm của d với Ox và Oy lần lượt là A và B \(\Rightarrow\left\{{}\begin{matrix}A\left(2a-1;0\right)\\B\left(0;\frac{2a}{\left(a-1\right)^2}\right)\end{matrix}\right.\)

Do \(S_{OAB}=2\Rightarrow\frac{1}{2}OA.OB=2\Rightarrow OA.OB=4\)

\(\Rightarrow\left|\left(2a-1\right)\frac{2a}{\left(a-1\right)^2}\right|=4\Rightarrow\left\{{}\begin{matrix}\frac{2a\left(2a-1\right)}{\left(a-1\right)^2}=4\\\frac{2a\left(2a-1\right)}{\left(a-1\right)^2}=-4\end{matrix}\right.\) \(\Rightarrow a=\frac{2}{3}\)

\(\Rightarrow M\left(\frac{2}{3};-3\right)\)

NV
2 tháng 4 2021

\(y'=\dfrac{-3-m}{\left(x-1\right)^2}\) ; \(y\left(2\right)=m+5\) ; \(y'\left(2\right)=-m-3\)

Phương trình tiếp tuyến tại điểm có hoành độ \(x=2\):

\(y=\left(-m-3\right)\left(x-2\right)+m+5\)

\(\Leftrightarrow y=-\left(m+3\right)x+3m+11\)

Để tiếp tuyến cắt 2 trục tạo thành tam giác \(\Rightarrow m\ne\left\{-3;-\dfrac{11}{3}\right\}\)

Gọi A và B lần lượt là giao điểm của tiếp tuyến với Ox và Oy

\(\Rightarrow A\left(\dfrac{3m+11}{m+3};0\right)\) ; \(B\left(0;3m+11\right)\)

\(\Rightarrow OA=\left|\dfrac{3m+11}{m+3}\right|\) ; \(OB=\left|3m+11\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{25}{2}\Rightarrow\dfrac{\left(3m+11\right)^2}{\left|m+3\right|}=25\)

\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Rightarrow\left[{}\begin{matrix}\left(3m+11\right)^2=-25\left(m+3\right)\\\left(3m+11\right)^2=25\left(m+3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9m^2+91m+196=0\\9m^2+41m+46=0\end{matrix}\right.\) \(\Rightarrow m=...\)