Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có: y ' = − m − 3 x − 1 2
Ta có: x 0 = 2 ⇒ y 0 = m + 5 , y ' x 0 = − m − 3. Phương trình tiếp tuyến Δ của C m tại điểm có hoành độ x 0 = 2 là: y = − m − 3 x − 2 + m + 5 = − m − 3 x + 3 m + 11
• Δ ∩ O x = A ⇒ A 3 m + 11 m + 3 ; 0 , với m + 3 ≠ 0
• Δ ∩ O y = B ⇒ B 0 ; 3 m + 11
Suy ra diện tích tam giác OAB là: S = 1 2 O A . O B = 1 2 3 m + 11 2 m + 3
Theo giả thiết bài toán ta suy ra: 1 2 3 m + 11 2 m + 3 = 25 2
⇔ 3 m + 11 2 = 25 m + 3 ⇔ 9 m 2 + 66 m + 121 = 25 m + 75 9 m 2 + 66 m + 121 = − 25 m − 75 ⇔ 9 m 2 + 41 m + 46 = 0 9 m 2 + 91 m + 196 = 0 ⇔ m = − 2 ; m = − 23 9 m = − 7 ; m = − 28 9
Chọn đáp án C
STUDY TIP |
Ta lập phương trình đường thẳng đi qua hai tiếp điểm của hai tiếp tuyến với (C) bằng phương pháp gián tiếp |
Đáp án A
Vì I là tâm đối xứng của đồ thị C ⇒ I 2 ; 2
Gọi M x 0 ; 2 x 0 − 1 x 0 − 2 ∈ C ⇒ y ' x 0 = − 3 x 0 − 2 2 suy ra phương trình tiếp tuyến Δ là
y − y 0 = y ' x 0 x − x 0 ⇔ y − 2 x 0 − 1 x 0 − 2 = − 3 x 0 − 2 2 x − x 0 ⇔ y = − 3 x 0 − 2 2 + 2 x 0 2 − 2 x 0 + 2 x 0 − 2 2
Đường thẳng Δ cắt TCĐ tại A 2 ; y A → y A = 2 x 0 + 2 x 0 − 2 ⇒ A 2 ; 2 x 0 + 2 x 0 − 2
Đường thẳng Δ cắt TCN tại B x B ; 2 → x B = 2 x 0 − 2 ⇒ B 2 x 0 − 2 ; 2
Suy ra I A = 6 x 0 − 2 ; I B = 2 x 0 − 2 → I A . I B = 6 x 0 − 2 .2 x 0 − 2 = 12
Tam giác IAB vuông tại I ⇒ R Δ I A B = A B 2 = I A 2 + I B 2 2 ≥ 2 I A . I B 2 = 6
Dấu bằng xảy ra khi và chỉ khi I A = I B ⇔ 3 = x 0 − 2 2 ⇔ x 0 = 2 + 3 x 0 = 2 − 3
Suy ra phương trình đường thẳng Δ và gọi M, N lần lượt là giao điểm của Δ với Ox, Oy
Khi đó M 2 x 0 2 − 2 x 0 + 2 3 ; 0 , N 0 ; 2 x 0 2 − 2 x 0 + 2 3 ⇒ S Δ O M N = 1 2 O M . O N
Vậy S m a x = 14 + 8 3 ≈ 27 , 85 ∈ 27 ; 28 k h i x 0 = 2 + 3
Đáp án C.
Có y ' = − 2 x . Tiếp tuyến (d) của đồ thị hàm số tại điểm 1 ; 3 có phương trình là:
y = y ' 1 x − 1 + 3 ⇔ y = − 2 x − 1 + 3 ⇔ y = − 2 x + 5.
Đường thẳng này cắt trục Ox tại cắt trục tại A 5 2 ; 0 cắt trục Oy tại B 0 ; 5 .
S A O B = 1 2 O A . O B = 1 2 . 5 2 .5 = 25 4