Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến \(\Delta\) cần tìm
Ta có : \(y'=3x^2-12x+9\Rightarrow y'\left(x_0\right)=3x^2_0-12x_0+9\)
Ta có : \(x_0=1;y_0=2;y'\left(x_0\right)=0\)
Phương trình tiếp tuyến là : \(y-2=0\left(x-1\right)\) hay y = 2
b) Ta có \(x_0=0\Rightarrow y_0=-2,y'\left(x_0\right)=9\)
Phương trình tiếp tuyến là :\(y+2=9\left(x-0\right)\) hay \(y=9x-2\)
c) Ta có \(x_0=-1\Rightarrow y_0=f\left(x_0\right)=-18;y'\left(x_0\right)=24\)
Phương trình tiếp tuyến là : \(y+18=24\left(x+1\right)\) hay \(y=24x+6\)
d) Ta có : \(y_0=6\Rightarrow x_0^3-6x^2_0+9x_0-2=-2\Leftrightarrow x_0^3-6x^2_0+9x_0=0\)
\(\Leftrightarrow x_0=0;x_0=3\)
* \(x_0=-1\) suy ra phương trình tiếp tuyến là : \(y=9x-2\)
* \(x_0=3\Rightarrow y_0=-2,y'\left(x_0\right)=0\), suy ra phương trình tiếp tuyến là : \(y=2\)
Vậy có 2 tiếp tuyến là \(y=9x-2;y=2\)
e) Ta có : \(y'=0\Leftrightarrow\)\(\begin{cases}x=1\\x=3\end{cases}\)\(y''=6x-12\)
\(y''\left(1\right)=-6< 0;y"\left(3\right)=6>0\)
Suy ra đồ thị (C) có điểm cực tiểu là \(A\left(3;-2\right)\); điểm cực đại là \(B\left(1;2\right)\)
Giả sử \(M\left(a;a^3-6a^2+9a-2\right),a\ne3;1\)
Phương trình đường thẳng AB : \(2x+y-4=0\)
Ta có : \(S_{SBM}=\frac{1}{2}AB.d\left(M;AB\right)=6\)
\(\Leftrightarrow\frac{1}{2}\sqrt{2^2+\left(-4\right)^2}.\frac{\left|2a+a^3-6a^2+9a-2-4\right|}{\sqrt{2^2+1}}=6\)
\(\Leftrightarrow\left|a^3-6a^2+11a-6\right|=6\Leftrightarrow\left[\begin{array}{nghiempt}a=0\Rightarrow M\left(0;-2\right)\\a=4\Rightarrow M\left(4;2\right)\end{array}\right.\)
* Phương trình tiếp tuyến với (C) tại điểm M(0;-2) là : \(y+2=y'\left(0\right)\left(x-0\right)\) hay \(y=9x-2\)
* Phương trình tiếp tuyến với (C) tại điểm M(4;2) là : \(y-2=y'\left(4\right)\left(x-4\right)\) hay \(y=9x-34\)
Ta có
Gọi là một điểm thuộc đồ thị hàm số. Khi đó phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm M là:
Theo đề bài ta có đường thẳng
+) Phương trình tiếp tuyến của đồ thị hàm số tại là: (tm)
+) Phương trình tiếp tuyến của đồ thị hàm số tại là: ( ktm do ≡ (d) )
Chọn B
Đáp án: C.
y' = 4 x 3 - 4x = 4x( x 2 - 1). Ta có
y - y(-2) = y'(-2)(x + 2) ⇔ y - 8 = -24(x + 2) ⇔ y = -24x - 40.
Đáp án: C.
y' = 4 x 3 - 4x = 4x( x 2 - 1). Ta có
y - y(-2) = y'(-2)(x + 2) ⇔ y - 8 = -24(x + 2) ⇔ y = -24x - 40.