Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\sqrt{27\left(1-\sqrt{3}\right)^2}\div3\sqrt{15}=\left(3\sqrt{3}\left|1-\sqrt{3}\right|\right)\div3\sqrt{15}=\left(9-3\sqrt{3}\right)\div3\sqrt{15}\)
\(=\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{5}=\frac{\sqrt{15}-\sqrt{5}}{5}\)
2) ĐK : a > 0
\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(a-\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a-\sqrt{a}+1}=a-1\)
3) \(\sqrt{15}-\sqrt{6}=\sqrt{3}\cdot\sqrt{5}-\sqrt{3}\cdot\sqrt{2}=\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)\)
\(x+\sqrt{\left(x-1\right)^2}=x+\left|x-1\right|\)(1)
Với x < 1 (1) = x - ( x - 1 ) = x - x + 1 = 1
Với x >= 1 (1) = x + x - 1 = 2x - 1
SUy ra 2 trường hợp => từ 1 và 2 suy ra gì gì đó........
CHúc bạn hok tốt ;-;
Áp dụng căn bậc hai,ta từ 1 có thể suy ra 2(2 ở đây là 2TH).Ví dụ:
\(1=\sqrt{1}=\hept{\begin{cases}-1\\1\end{cases}}\)
Còn nếu từ số một suy ra số 2 thì :
\(2-2+1\)
\(=2-\left(1+1\right)+\left(0,5+0,5\right)\)
\(=2-\left(1+\sqrt{1}\right)+\left(0,5+\sqrt{0,25}\right)\)
\(=2-\left(1+-1\right)+\left(0,5+-0,5\right)\)
\(=2-\left(1-1\right)+\left(0,5-0,5\right)\)
\(=2-0+0\)
\(=2\)
\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(A=\left|2x-1\right|+\left|2x-3\right|\)
\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)
\(A\ge2\)
\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
\(7:a,\sqrt{2-x}=3\)
\(\left|2-x\right|=3^2=9\)
\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)
\(b,\sqrt{4-4x+x^2}=3\)
\(\sqrt{\left(2-x\right)^2}=3\)
\(\left|2-x\right|=3\)
\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)
\(c,\sqrt{4+x^2}+x=3\)
\(\sqrt{4+x^2}=3-x\)
\(4+x^2=\left(3-x\right)^2\)
\(4+x^2=9-6x+x^2\)
\(x=\frac{5}{6}\left(TM\right)\)
\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)
\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)
\(\sqrt{x-2}\left(2-4+3\right)=5\)
\(\sqrt{x-2}=5\)
\(\left|x-2\right|=25\)
\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{2}+\frac{1}{2x}\ge2\sqrt{\frac{x}{4x}}=\frac{2}{2}=1\)
\(\frac{y}{2}+\frac{2}{y}\ge2\sqrt{\frac{y2}{2y}}=2\)
Cộng theo vế 2 bất đẳng thức trên ta được :
\(\frac{x}{2}+\frac{y}{2}+\frac{1}{2x}+\frac{2}{y}\ge3\)
\(< =>2\left(\frac{x}{2}+\frac{y}{2}\right)+\frac{1}{2x}+\frac{2}{y}\ge3+\frac{x}{2}+\frac{y}{2}\)
\(< =>x+y+\frac{1}{2x}+\frac{2}{y}\ge3+\frac{x+y}{2}=3+\frac{3}{2}=\frac{9}{2}\)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=1\\y=2\end{cases}}\)
được chưa ?
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y ≥ 3 ta có :
\(x+y+\frac{1}{2x}+\frac{2}{y}=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{2}x\cdot\frac{1}{2x}}+2\sqrt{\frac{1}{2}y\cdot\frac{2}{y}}+\frac{1}{2}\cdot3=\frac{9}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\frac{1}{2}x=\frac{1}{2x}\\\frac{1}{2}y=\frac{2}{y}\\x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)