K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

x=8p ; y=8q  với (p;q) =1

Mà x+y =32 =>  8p+8q =32 => p+q =4 

=: > p =1 q =3 

p=1 => x =8

q =3 => y =3.8 =24

Vậy (x;y) =(8;24) hoặc (24;8)

11 tháng 12 2014

a, Do UCLN là 5 nên a, b chia hết cho 5 => tận cùng là 0 hoặc 5

Ta có 20 = 15 + 5 = 18 + 2=19+1=17+3=16+4=14+6=13+7=12+8=11+9

=> 2 số a và b là 15 và 5 hoặc 5 và 15 

Bài sau làm tương tự em nhé :)

9 tháng 12 2017

Tìm tập hợp các số nguyên x biết : 

| x + 1 | < 2

20 tháng 5 2018

nếu giải được chon chứ

23 tháng 11 2020

Ta có : \(\left(x;y\right)=8\)

\(\Rightarrow x=8m\)và  \(y=8n\) 

Với (m;n)=1(m;n)=1 , m;n ϵ N

Vì x và y có vai trò như nhau nên giả sử x > y → m > n

Lại có :   \(y\times x=192\)

  \(\Rightarrow8m\times8n=192\)

     \(\Rightarrow mn=3=1\times3\)

     \(\Rightarrow\)m = 3 ; n = 1

     \(\Rightarrow\) x = 24 ; y = 8

Vậy x;y={(24;8)}

12 tháng 4 2020

Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau

\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)

Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)

Không thỏa mãn điều kiện vì 12 không chia hết cho 5

Ta có : \(x=8x',y=8y'\)(như trên)

Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)

Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)

Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)

11 tháng 8 2021

á đù được của ló đấy

1 tháng 11 2017

ƯCLN (x, y) = 1 => x và y là 2 số nguyên tố cùng nhau có tích là 6.

Giả sử x ≥ y, ta có bảng

x63
y12
12 tháng 11 2017

ban kia lam dung roi

23 tháng 3 2020

a)Vì ƯCLN(x;y) = 5

=> \(\hept{\begin{cases}x=5k\\y=5t\end{cases}\left(k;t\inℕ^∗\right)}\)

Lại có : x + y = 12 

<=> 5k + 5t = 12

=> 5(k + t) = 12

=> k + t = 2,4 

mà \(k;t\inℕ^∗\)

=> \(k;t\in\varnothing\)

=> x ; y \(\in\varnothing\)

b) Vì ƯCLN(x;y) = 8

=> \(\hept{\begin{cases}x=8k\\y=8t\end{cases}\left(k;t\inℕ^∗\right)}\)

Lại có x + y = 32

<=> 8k + 8t = 32

=> k + t = 4 

mà \(k;t\inℕ^∗\)

Lập bảng xét các trường hợp : 

k132
t312
x82416 (loại)
y24816 (loại)


Vậy các cặp (x;y) thỏa mãn là : (24 ; 8); (8;24)