\(\frac{X^2-11}{2}+\frac{X^2-13}{4}=\frac{X^2-15}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

\(\frac{x^2-11}{2}+1+\frac{x^2-13}{4}+1=\frac{x^2-15}{6}+1+\frac{x^2-16}{7}+1\)
\(\frac{x^2-9}{2}+\frac{x^2-9}{4}-\frac{x^2-9}{6}-\frac{x^2-9}{7}=0\)
\(\left(x^2-9\right)\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{6}-\frac{1}{7}\right)=0\)
\(Do:\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{6}-\frac{1}{7}\right)\ne0\)
\(\Rightarrow x^2-9=0\) => x=3 hoặc x=-3 

31 tháng 1 2016

Theo ht Viet :

\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)

Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1) 

(+) tính x1  - x2 

TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)

Rút gọn => x1 - x2 sau đó thay vào (1) 

31 tháng 1 2016

b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM ) 

Xét a khác 0 pt là pt bậc 2 

\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)

LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên 

2 tháng 8 2019

5:x^2 +4x +5x + 20 =0

(x^2 + 4x).(5x+20)

x(x+4).5(x+4)

(x+4).(x+5)

[x+5=0 ->x=-5

[x+4=0 ->x=-4

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

1 tháng 7 2019

a)  ĐK: x, y, z khác 0

\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)

\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)

Ta có hệ >:

\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c

"="   xảy ra khi và chỉ khi a=b=c

Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\)  giải ra tìm x, y, z

b) Hệ đối xứng:

\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

Đặt x+y=S, xy=P

Ta có hệ :

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)

=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)

Tự giải tìm S, P 

=> x,y