Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1 / e . ( t/p từ 1->e ( e.lnx / ( x + 1 ) ) dx
= 1 / e . ( tp từ 1->e ( ln(x+1) / ( x + 1 ) ) dx < e.lnx = ln ( x + 1 ) mà >
= 1 / e . ( tp từ 1->e ( ln(x+1) d ( ln ( x + 1 ) )
= 1 / e . ( 1 /2 . ln^2 (( x + 1 )) |1->e )
= ( ln^2 (( e + 1 )) - ln2 ) / 2e
\(I=\int_1^e\dfrac{\ln x}{x}dx=\int_1^e\ln x.d(\ln x)=\dfrac{(\ln x)^2}{2}|_1^e=...\)
Bạn nên viết đề bằng công thức toán để mọi người hiểu đề hơn
đặt t = lnx
tôi ko biết \(\varepsilon\) trong bài là gì, tuy nhiên nếu nó là số bất kì thì xét 2 TH sau để biết đk t
TH1: \(\varepsilon\in\left(0;1\right)\)
TH2: \(\varepsilon>1\)
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
\(I=\int\limits^e_1xlnxdx+\int\limits^e_1\dfrac{lnx}{x}dx=I_1+I_2\)
Xét \(I_1\) , đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{x^2}{2}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{x^2}{2}lnx|^e_1-\int\limits^e_1\dfrac{x}{2}=\dfrac{e^2}{2}-\dfrac{e}{2}+\dfrac{1}{2}\)
Xét \(I_2=\int\limits^e_1\dfrac{lnx}{x}dx=\int\limits^e_1lnx.d\left(lnx\right)=\dfrac{ln^2x}{2}|^e_1=\dfrac{1}{2}\)
\(\Rightarrow I=\dfrac{e^2}{2}-\dfrac{e}{2}+1\)