Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}\)
\(=\frac{b-a}{ab}=\frac{b-a}{a-b}\)
\(=\left(-1\right)\)
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{b-a}{a-b}\)
Suy ra : \(\Rightarrow\left(-1\right)\)
\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất ,dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
=> x = 1/2
Vì a,b tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{2}\) suy ra \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{15}=\frac{b}{10}\) (1)
a,c tỉ lệ nghịch với \(\frac{1}{5};\frac{1}{7}\) suy ra \(\frac{a}{5}=\frac{c}{7}\Rightarrow\frac{a}{15}=\frac{c}{21}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\). Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}=\frac{a+b+c}{15+10+21}=\frac{184}{46}=4\)
\(\Rightarrow\begin{cases}\frac{a}{15}=4\Rightarrow a=4\cdot15=60\\\frac{b}{10}=4\Rightarrow b=4\cdot10=40\\\frac{c}{21}=4\Rightarrow c=4\cdot21=84\end{cases}\)
\(\Rightarrow M=a^2+b^2-c^2=60^2+40^2-84^2=-1856\)
Ta có: a.8/7 = b.8/9 = c.5/7
=> \(\frac{a}{\frac{7}{8}}=\frac{b}{\frac{9}{8}}=\frac{c}{\frac{7}{5}}=\frac{b-a}{\frac{9}{8}-\frac{7}{8}}=\frac{20}{\frac{1}{4}}=80\) (áp dụng tính chất của dãy tỉ số bằng nhau)
=> a = 80 x 7/8 = 70
=> b = 70 + 20 = 90
=> c = 80 x 7/5 = 112
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html
ADTCDTSBN
có: \(\frac{a+2001}{b+2001}=\frac{a}{b}=\frac{2001}{2001}=1\)
\(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
ta xét tích
a( b +2001) = ab + 2001a
b(a + 2001) = ab + 2001b
vì b > 0 => b+ 2001>0
+) a>b => ab + 2001a > ab + 2001b
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
+) a < b => ab + 2001a < ab + 2001b
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
+) a = b
=> \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Ta có ab=a-b
Lại có 1/a-1/b =b-a/ab = -1