Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thâm vãi :")
Cách tính góc trong 1 tam giác đều là: n - cạnh
Theo đề bài ta có: \(\frac{\left(n-2\right).180^0}{n}:\frac{\left(m-2\right).180^0}{m}=5:7\) \(\left(ĐK:n\ge3;m\ge3;n\in Z;m\in Z\right)\)
\(\Rightarrow7\left(n-2\right)m=5\left(m-2\right)n\)
\(\Rightarrow nm-7m+5n=0\)
\(\Rightarrow m\left(n-7\right)+5\left(n-7\right)=35\)
\(\Rightarrow\left(m+5\right)\left(n-7\right)=35\)
Ta có: \(m\ge3\)suy ra \(m+5\ge8\)
Nên số 35 được phân tích thành 1.35 hoặc 7 - n = 1 và m + 5 = 35
Vậy n = 6 và m = 30
a) Số đường chéo của đa giác đó :
\(\frac{\left(8-3\right).8}{2}=20\)( đường chéo )
b) Tổng số đo các góc của đa giác là :
\(108.\left(8-2\right)=108.6=1080\)độ
c) Số đo mỗi góc của đa giác đều 8 cạnh :
\(1080:8=135\)độ
a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)
Gọi số cạnh là n
Ta có công thức tính mỗi góc của đa giác đều n cạnh là :
\(\frac{\left(n-2\right).180^0}{n}\)
Đa giác đều có số đường chéo bằng số cạnh
\(\Rightarrow\)Đa giác đều đó là tam giác đều và tổng số đo mỗi góc là \(60^o\)