K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

là 6,9,12 hay là cao hơn nha 

Mik chưa biết rõ

30 tháng 11 2017

2 đơn vị thôi bạn ạ

VD:

Chiều dài là 12,vậy chiều rộng là 8

Tăng chiều dài 3 đơn vị thì là 15 nếu tăng chiều rộng thêm 2 đơn vị thì là 10.15/10 rút gọn đi là 3/2 .Suy ra chiều rộng tăng 2 đơn vị

16 tháng 6 2017

Gọi chiều dài và chiều rộng lần lượt là : a,b (a,b > 0)

Khi đó : \(\frac{a}{b}=\frac{3}{2}\)=> 2a = 3b 

Nếu chiều dài hình chữ nhật tăng thêm 3(đơn vị) thì chiều rộng hình chữ nhật phải tăng lên mấy đơn vị để tỉ số của 2 cạnh không đổi 

Nên : \(\frac{a+3}{b+x}=\frac{a}{b}=\frac{3}{2}\)

\(\Leftrightarrow\left(a+3\right)b=\left(b+x\right)a\)

<=> ab + 3b = ab + ax

<=> ab - ab = ax - 3b

=> ax - 3b = 0

=> ax = 3b 

Mà : 2a = 3b 

Nên x = 2 

16 tháng 6 2017

Cách 1

Nếu chiều dài hình chữ nhật tăng lên 3 đơn vị thì chiều rộng sẽ tăng lên số lần là

                \(3\div\frac{3}{2}=2\)  Đơn vị 

\(3\div2=\frac{3}{2}=0,5\) 

                        Đáp số ; \(2\) Đơn vị

Tôi chỉ giải được cách 1 thôi. Năm nay mới lên lớp 6

24 tháng 2 2017

Gọi chiều dài và chiều rộng của hình chữ nhật đó là a ; b

Gọi số cần thêm vào chiều rộng để khi chiều dài tăng thêm 3 đv mà tỉ số giữa chiều dài và chiều rộng ko đổi đổi là x

Theo đề bài ta có \(\frac{a}{b}=\frac{3}{2}\) và \(\frac{a+3}{b+x}=\frac{3}{2}\)

\(\Leftrightarrow2a=3b\) và \(2\left(a+3\right)=3\left(b+x\right)\)

\(\Leftrightarrow2a+6=3b+3x\)

Mà \(2a=3b\) \(\Rightarrow6=3x\)

\(\Rightarrow x=2\)

Vậy nếu chiều dài tăng thêm 3 đv mà tỉ số giữa chiều dài và chiều rộng ko đổi đổi thì chiều rộng phải tăng lên 2 đơn vị