K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Gọi M là điểm chia đoạn AB (AM > MB) và AB có độ dài bằng a.

Gọi tỉ số cần tìm là x (x > 0).

Theo đề bài: Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ AM = x.AB = ax;

⇒ M B   =   x . A M   =   x . a x   =   a x 2

Ta có: MA + MB = AB

⇒ a x + a x 2 = a ⇔ x 2 + x = 1 ⇔ x 2 + x − 1 = 0

Có a = 1 ; b = 1 ; c = -1 ⇒ Δ = 1 – 4.1.(-1) = 5 > 0.

Phương trình có hai nghiệm

Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có nghiệm Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9 thỏa mãn điều kiện.

Vậy tỉ số cần tìm là: Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Để giải bài toán bằng cách lập phương trình ta làm theo các bước:

Bước 1: Lập phương trình

   + Chọn ẩn và đặt điều kiện cho ẩn

   + Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.

   + Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình

Bước 3: Đối chiếu điều kiện rồi kết luận.

21 tháng 6 2019

Gọi M là điểm chia đoạn AB (AM > MB) và AB có độ dài bằng a.

Gọi tỉ số cần tìm là x (x > 0).

Theo đề bài: Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ AM = x.AB = ax;

⇒MB = x.AM = x.ax = ax2

Ta có: MA + MB = AB

⇒ ax + ax2 = a

⇔ x2 + x = 1

⇔ x2 + x – 1 = 0.

Có a = 1 ; b = 1 ; c = -1 ⇒ Δ = 1 – 4.1.(-1) = 5 > 0.

Phương trình có hai nghiệm

Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có nghiệm Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9 thỏa mãn điều kiện.

Vậy tỉ số cần tìm là: Giải bài 53 trang 60 SGK Toán 9 Tập 2 | Giải toán lớp 9

2 tháng 5 2020

Bài 1 : 

Gọi thời gian người thứ nhất và người thứ hai làm đc là x(ngày) và y(ngày)

Khi đó, trong 1 ngày mỗi người làm đc số phần công việc là  \(\frac{1}{x}\) và \(\frac{1}{y}\)

Vậy trong 1 ngày 2 người cùng làm được \(\frac{1}{x}+\frac{1}{y}\)phần công việc

Do 20 ngày cùng làm chung trong 20 ngày thì xong nên

\(20\left(\frac{1}{x}+\frac{1}{y}\right)=1\)

\(\Leftrightarrow\frac{20}{x}+\frac{20}{y}=1\)

Lại có sau khi làm chung được 12 ngày thì một trong hai người đi làm việc khác trong khi đó người kia vẫn tiếp tục làm. Đi được 12 ngày, người thứ nhất trở về làm tiếp 6 ngày nữa (trong 6 ngày đó người thứ hai nghỉ) và công việc được hoàn thành nên ta có

\(12\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{12}{y}+\frac{6}{x}=1\)

\(\Leftrightarrow\frac{18}{x}+\frac{24}{y}=1\)

Vậy ta có hệ

\(\hept{\begin{cases}\frac{20}{x}+\frac{20}{y}=1\\\frac{18}{x}+\frac{24}{y}=1\end{cases}}\)

Đặt \(u=\frac{1}{x},v=\frac{1}{y}\). Khi đó hệ trở thành

\(\hept{\begin{cases}20u+20v=1\\18u+24v=1\end{cases}}\)

Vậy \(u=\frac{1}{30},v=\frac{1}{60}\)

Vậy x=30,y=60

Do đó người thứ nhất và người thứ hai làm riêng trong lần lượt 30 ngày và 60 ngày thì xong công việc.

2 tháng 5 2020

Bài 2 : 

Gọi số nhỏ hơn là x, khi đó số lớn hơn là x+10

Do phép nhân sai nên kết quả ở hàng chục bị thiết đi 3 nên khi đó tích là

\(x\left(x+10\right)-30=x^2+10x-30\)

Lại có nếu đem kết quả sai dó chia cho số nhỏ hơn trong 2 số ban đầu sẽ được thương là 25 và số dư là 4 nên ta có

\(x^2+10x-30=25x+4\)

\(\Leftrightarrow x^2-15x-34=0\)

\(\Leftrightarrow\left(x-17\right)\left(x+2\right)=0\)

Vậy x=17 hoặc x= -2 (loại ) 

Do đó 2 số cần tìm là 17 và 27.