Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo)
A= \(\frac{25^3.5^3}{6.5^{10}}\)= \(\frac{\left(5^2\right)^3.5^3}{6.5^{10}}\)= \(\frac{5^6.5^3}{6.5^{10}}\)= \(\frac{5^9}{6.5^{10}}\)= \(\frac{5}{6}\)
B = \(\frac{2^5.6^3}{8^2.9^2}\)= \(\frac{2^5.\left(2.3\right)^3}{\left(2^3\right)^2.\left(3^2\right)^2}\)=\(\frac{2^5.2^3.3^3}{2^6.3^4}\)= \(\frac{2^8.3^3}{2^6.3^4}\)= \(\frac{2^2}{3}\)= \(\frac{4}{3}\)
C = \(\frac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\)= \(\frac{5^3.3^3+5.5^2.3^2-5^3}{6^3.3^3+6.6^2.3^2-6^3}\)= \(\frac{5^3+5^3.3^2-5^3}{6^3.3^3+6^3.3^2-6^3}\)= \(\frac{5^3.\left(1+3^2-1\right)}{6^3.\left(3^3+3^2-1\right)}\)= \(\frac{5^3.9}{6^3.35}\)
=\(\frac{5^3.3^2}{2^3.3^3.7.5}\)
= \(\frac{25}{168}\)
D = \(\frac{\left(7^4-7^3\right)^2}{49^3}\)= \(\frac{[7^3\left(7-1\right)]^2}{\left(7^2\right)^3}\)= \(\frac{7^6.6^2}{7^6}\)= \(36\)
\(\dfrac{-6}{25}+\left|\dfrac{-4}{5}\right|-\left|\dfrac{2}{25}\right|\)
\(=\dfrac{-6}{25}+\dfrac{4}{5}-\dfrac{2}{25}\)
\(=\dfrac{-6}{25}+\dfrac{20}{25}-\dfrac{2}{25}\)
\(=\dfrac{12}{25}\)
1)
a. \(\left(3x^2-50\right)^2=5^4\)
\(\Leftrightarrow3x^4-50=625\)
\(\Leftrightarrow3x^4=675\)
\(\Leftrightarrow x^4=225\)
\(\Leftrightarrow x=\sqrt{15}\)
2)
a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)
\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)
b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)
\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)
g)\(=\left(-\dfrac{3}{4}+\dfrac{2}{5}\right).\dfrac{7}{3}+\left(\dfrac{3}{5}+-\dfrac{1}{4}\right).\dfrac{7}{3}\)
\(=\left(-\dfrac{3}{4}+-\dfrac{1}{4}+\dfrac{2}{5}+\dfrac{3}{5}\right).\dfrac{7}{3}\)
\(=\left(-1+1\right).\dfrac{7}{3}=0.\dfrac{7}{3}=0\)
f) \(\dfrac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\)
\(=\dfrac{3^3.5^3+5.5^2.3^2-5^3}{3^3.6^3+6.6^2.3^2-6^3}\)
\(=\dfrac{5^3.\left(3^3+3^2-1\right)}{6^3.\left(3^3+3^2-1\right)}\)
\(=\dfrac{5^3}{6^3}\)
\(=\dfrac{125}{216}\)