
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đáp án A
Amoni clorua: NH4Cl; lysin: NH2-[CH2]4CH(NH2)COOH; alanin: C6H5NH2; axit glutamic: HOOC-[CH2]2CH(NH2)COOH; phenylamoni clorua: C6H5NH3Cl.
Những chất làm quỳ hóa đỏ: NH4Cl, C6H5NH3Cl, HOOC-[CH2]2CH(NH2)COOH
Chất làm quỳ chuyển xanh: NH2-[CH2]4CH(NH2)COOH
Chất không làm quỳ chuyển màu: C6H5NH2.
NH4Cl + NaOH → NH3 + NaCl + H2O.
NH2-[CH2]4CH(NH2)COOH + NaOH → NH2-[CH2]4CH(NH2)COONa + H2O
C6H5NH2 không tác dụng NaOH
C6H5NH3Cl + NaOH → C6H5NH2 + NaCl + H2O.
HOOC-[CH2]2CH(NH2)COOH + 2NaOH → NaOOC-[CH2]2CH(NH2)COONa + 2H2O

Những phân tử polime có cấu tạo mạch không phân nhánh là polietilen, poli (vinyl clorua) và xenlulozơ. Polime có cấu tạo mạch phân nhánh là aminopectin của tinh bột.
Chọn câu đúng nhất trong các câu sau:
a) Polime là những chất có phân tử khối lớn.
b) Polime là những chất có phân tử khối nhỏ.
c) Polime là những chất có phân tử khối rất lớn do nhiều loại nguyên tử liên kết với nhau tạo nên.
d) Polime là những chất có phân tử khối rất lớn do nhiều mắt xích liên kết với nhau tạo nên

Chọn đáp án B
X làm hóa đỏ quỳ tím X là axit glutamic
T làm hóa xanh quỳ tím T là melylamin. Y, Z là anilin và alanin.
Y + NaOH thu được dung dịch trong suốt Y là alanin.
Z + NaOH thu được dung dịch tách lớp Z là anilin

quá khủng
1. axetilen( ankin), benzen( hidrocacbon mạch vòng), ruou etylic ( ancol), axit axetic( axit cacboxylic), glucozo(cacbohidrat), etyl axetat( este), etilen( anken)
2.
a, qùy tím, nước vôi trong, dd brom
b, quỳ tím, nước vôi trong, và bạc
c,quỳ tím, nước vôi trong, cuso4 khan, kmno4
d,quỳ tím, brom, cuo
e, brom,quỳ tím,na
g, Cu(OH)2, đốt.

Ta có: cos 450 = \(\frac{\text{ λ}}{\text{ λ}'}=\frac{\text{ λ}}{0,22}\)
=> λ = cos450.0,22 = 0.156Ǻ
Thưa thầy, thầy chữa bài này được không ạ. Thầy ra lâu rồi nhưng chưa có đáp án đúng

phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)