\(2,137.175-2,137.75=.........\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

a, 2,137.175-2,137.75

=2,137.(175-75)

=2,137.100

=213,7

b, 2,8.225+72.22,5

=28.22,5+72.22,5

=22,5.(28+72)

=22,5.100=225

c, 15.91,5+150.0,85

=15.91,5+15.8,5

=15.(91,5+8,5)

=15.100=1500

d, 1,43.141-1,43.41

=1,43.(141-41)

=1,43.100=143

25 tháng 6 2019

bạn nhớ tick cho mk nhé

20 tháng 4 2017

a) 15 . 91,5 + 150 . 0,85 = 15 . 91,5 + 15 . 8,5

= 15(91,5 + 8,5) = 15 . 100 = 1500

b) x(x - 1) - y(1 - x) = x(x - 1) - y[-(x - 1)]

= x(x - 1) + y(x - 1)

= (x - 1)(x + y)

Tại x = 2001, y = 1999 ta được:

(2001 - 1)(2001 + 1999) = 2000 . 4000 = 8000000

23 tháng 9 2017

a)15.91,5+150.0,85

=15.(91,5+10 .0,85)

=15.100

=1500

b)x(x-1)-y(1-x) =(x-1)(x+y)

thay 2001 vào x, 1999 vào y ta có :

(2001 -1). (2001+1999)

=2000.4000

=8000000

23 tháng 8 2020

Bài làm:

Ta có: \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)

\(=\frac{4-x^2}{x-3}+\frac{2x^2-2x}{x-3}+\frac{5-4x}{x-3}\)

\(=\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x-3\right)^2}{\left(x-3\right)}=x-3\) \(\left(x\ne3\right)\)

23 tháng 8 2020

\(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}.\)

\(=\frac{4-x^2}{x-3}-\frac{2x-2x^2}{x-3}+\frac{5-4x}{x-3}.\)

\(=\frac{4-x^2-2x+2x^2+5-4x}{x-3}\)

\(=\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x-3\right)^2}{x-3}=x-3\)

31 tháng 8 2020

\(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)( ĐKXĐ : \(x\ne\pm2\))

\(=\frac{5\left(x+2\right)}{2\left(2x-4\right)}\cdot\frac{-\left(2x-4\right)}{x+2}\)

\(=\frac{-5\left(x+2\right)\left(2x-4\right)}{2\left(2x-4\right)\left(x+2\right)}\)

\(=-\frac{5}{2}\)

\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}\)( ĐKXĐ : \(x\ne-5;x\ne6\))

\(=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\frac{3}{-\left(x-6\right)}\)

\(=\frac{3\left(x-6\right)\left(x+6\right)}{-2\left(x+5\right)\left(x-6\right)}\)

\(=\frac{3\left(x+6\right)}{-2\left(x+5\right)}=\frac{3x+18}{-2x-10}=-\frac{3x+18}{2x+10}\)

31 tháng 8 2020

a) 

Điều kiện : \(\hept{\begin{cases}4x-8\ne0\\x+2\ne0\end{cases}}\)    

\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)    

\(=\frac{5\left(x+2\right)}{-2\left(4-2x\right)}\cdot\frac{4-2x}{x+2}\)    

\(=\frac{-5}{2}\)    

b) 

Điều kiện : \(\hept{\begin{cases}2x+10\ne0\\6-x\ne0\end{cases}}\)    

\(\hept{\begin{cases}x\ne-5\\x\ne6\end{cases}}\)     

\(=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}\)   

\(=\frac{-6\left(x+6\right)\cdot3}{2x+10}\)   

\(=\frac{-9\left(x+6\right)}{x+5}\)  

\(=\frac{-9x-54}{x+5}\)  

\(=\frac{-9\left(x+5\right)-9}{x+5}\) 

\(=-9-\frac{9}{x+5}\)

23 tháng 8 2020

\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=0\)

<=>\(\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}=0\)

<=>\(\frac{y^2}{xy\left(2x-y\right)}-\frac{4x^2}{xy\left(2x-y\right)}=0\)

 =>y2-(2x)2=0

<=>(y-2x)(y+2x)=0

<=>y-2x=0 hoặc y+2x=0

M chỉ làm đc đến đó thôi!!!!!

NM
16 tháng 12 2020

bài 1.

a.\(\left(x+4\right)\left(x^2-4x+16\right)=x^3-4^3=x^3-64\)

b.\(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{27}\)

bài 2.

a.\(892^2+892.216+108^2=892^2+2.892.108+108^2\)

\(=\left(892+108\right)^2=1000^2=1_{ }000_{ }000\)

b.\(36^2+26^2-52.36=36^2+26^2-2.26.36=\left(36-26\right)^2=10^2=100\)

3 tháng 9 2020

a, \(\frac{x+2y}{8x^2y^5}-\frac{3x^2+2}{12x^4y^4}\)

=\(\frac{\left(x+2y\right)3x^2}{24x^4y^5}-\frac{\left(3x^2+2\right)2y}{24x^4y^5}\)

=\(\frac{3x^3+6x^2y}{24x^4y^5}-\frac{6x^2y+4y}{24x^4y^5}\)

=\(\frac{3x^3+6x^2y-6x^2y-4y}{24x^4y^5}\)

=\(\frac{3x^3-4y}{24x^4y^5}\)

b,\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)

=\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{\left(15y-25x\right)x}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y^2+5xy}{x\left(y-5x\right)\left(y+5x\right)}-\frac{15xy-25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y-5x}{x\left(y+5x\right)}\)

c,\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)

=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x^3-x^2\right)+\left(2x-2\right)}\)

=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)

=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{\left(x+5\right)x}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{4x-4-x^2+x}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{-2}{x\left(x-1\right)}\)

3 tháng 9 2020

\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))

\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)

\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)

3 tháng 9 2020

\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)

Đang đánh máy thì bấm gửi -..-

10 tháng 7 2019

a) \(\sqrt{4,9.1350.0,6}=\frac{7\sqrt{10}}{10}.15\sqrt{6}.\frac{\sqrt{15}}{5}=63\)

b) \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}=\frac{5\sqrt{2}}{2}.\frac{\sqrt{5}}{5}.\frac{\sqrt{10}}{10}=\frac{1}{2}\)

c) \(\sqrt{\frac{484}{169}}=\frac{22}{13}\)

d) \(\sqrt{\frac{2}{288}}=\sqrt{\frac{1}{144}}=\frac{1}{12}\)

e) \(\frac{\sqrt{2^5}}{\sqrt{2^3}}=\sqrt{2^2}=2\)