K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

ĐK: \(x,y\ne0,x\ne\pm y\)

Phép tính trên bằng:

        \(\left(\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{1}{x+y}.\frac{x^3-y^3}{xy}\right):\frac{x-y}{x}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)xy}\right):\frac{x-y}{x}\)

\(=\left(\frac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}\right):\frac{x-y}{x}\)

\(=\frac{\left(x-y\right)xy}{xy\left(x+y\right)}.\frac{x}{x-y}=\frac{x}{x+y}\)

`a)`

`3x(2xy - 5x^2y)`

`= 3x*2xy + 3x* (-5x^2y)`

`= 6x^2y - 15x^3y`

`b)`

`2x^2y (xy - 4xy^2 + 7y)`

`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`

`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`

`c)`

`(-2/3xy^2 + 6yz^2)*(-1/2xy)`

`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`

`= 1/3x^2y^3 - 3xy^2z^2`

`a, 3x(2xy-5x^2y)`

`= 6x^2y - 15x^3y`

`b, 2x^2y(xy-4xy^2+7y)`

`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`

`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`

`= 1/3x^2y^3 - 3xy^2z^2`

29 tháng 10 2019

\(b.=\frac{1\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{1c-1a+1a-1b+1b-1c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

29 tháng 10 2019

Sr nha

Kq mik nhầm

Ko phải -2b đâu mà = 0

14 tháng 11 2022

\(=\left[\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}\cdot\dfrac{x^3-y^3}{x-y}\right]\cdot\dfrac{x}{x-y}\)

\(=\left(\dfrac{x^2-y^2}{xy}-\dfrac{x^2+y^2+xy}{x+y}\right)\cdot\dfrac{x}{x-y}\)

\(=\dfrac{x^3+x^2y-xy^2-y^3-x^3y-xy^3-x^2y^2}{\left(x+y\right)\cdot xy}\cdot\dfrac{x}{x-y}\)

\(=\dfrac{x^3+x^2y-xy^2-y^3-x^3y-xy^3-x^2y^2}{y\left(x+y\right)\left(x-y\right)}\)

8 tháng 10 2018

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{\left(x^2-yz\right).\left(y+z\right)}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}+\frac{\left(y^2-xz\right).\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}+\frac{\left(z^2-xy\right).\left(x+y\right)}{\left(x+z\right)\left(y+z\right)\left(x+y\right)}\)

\(=\frac{x^2y-y^2z+x^2z-yz^2+y^2x-x^2z+zy^2-xz^2+z^2x-x^2y+yz^2-xy^2}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(=\frac{0}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(=0\)\(\left(\text{Đ}K:x+y,y+z,z+x\ne0\right)\)

Tham khảo nhé~

2 tháng 9 2020

\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)

Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)

2 tháng 9 2020

\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy+xy}{xy}\)

\(=\frac{-2xy}{xy}\)

\(=-2.\)