Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\y\ne0\\x\ne\pm2y\end{cases}}\)
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2}{x+2y}+\frac{1}{x-2y}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{x+2y}{\left(x+2y\right)\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}=\frac{2x-4y+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
a) (5x - 2y) (x2 - xy + 1)
=5x^3 − 5x^2y + 5x − 2x^2y +2xy^2 − 2y
=5x^3 − 7x^2y + 2xy^2 + 5x − 2y
b) (x - 1) (x + 1) (x + 2)
=(x^2−1)(x+2)
=x^3+2x^2−x−2
phần c) mình ko biết nha
a) (5x - 2y) (x2 - xy +1)
= 5x3-5x2y+5x-2x2y+2xy2+2y
= 5x3 - 7x2y+2xy2+5x+2y
b) (x - 1) (x + 1) (x + 2)
= (x\(^2\) - 1)(x + 2)
= x3 +2x2 - x - 2
c) \(\frac{1}{2}\)x2y2 (2x+y)(2x-y)
= \(\frac{1}{2}\)x2y2 (4x2 - y2)
= 2x4y2 - \(\frac{1}{2}\)x2y4
a)= \(\frac{-1}{xy}\)
b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)= \(\frac{3x}{2x\left(x+3\right)}\)- \(\frac{x-6}{2x\left(x+3\right)}\)= \(\frac{2x+6}{2x\left(x+3\right)}\)= \(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)= \(\frac{1}{x}\)
c)\(\frac{1}{xy-x^2}\)- \(\frac{1}{y^2-xy}\)= \(\frac{1}{x\left(x-y\right)}\)- \(\frac{1}{-y\left(x-y\right)}\)= \(\frac{y}{xy\left(x-y\right)}\)- \(\frac{-x}{xy\left(x-y\right)}\)= \(\frac{y+x}{xy\left(x-y\right)}\)
nhớ tick nhé
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
1) a) \(\frac{x}{x+1}+\frac{x^3-2x^2}{x^3+1}=\frac{x}{x+1}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x+x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{2x^3-3x^2+x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b) \(\frac{x+1}{2x-2}+\frac{3}{x^2-1}+\frac{x+3}{2x+2}=\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{x+3}{2\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x+1\right)^2+6+\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1+6+x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x^2+4x+2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
2) Ta có A = \(\left(\frac{x^2+y^2}{x^2-y^2}-1\right).\frac{x-y}{4y}=\frac{2y^2}{x^2-y^2}.\frac{x-y}{4y}=\frac{2y^2\left(x-y\right)}{\left(x-y\right)\left(x+y\right).4y}=\frac{y}{2\left(x+y\right)}\)
Thay x = 14 ; y = -15 vào biểu thức ta được
\(A=\frac{y}{2\left(x+y\right)}=\frac{-15}{2\left(14-15\right)}=\frac{-15}{-2}=7,5\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\y\ne0\\x\ne y\end{cases}}\)
\(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}=\frac{x}{y\left(x-y\right)}-\frac{2x-y}{x^2-xy}=\frac{x}{y\left(x-y\right)}-\frac{2x-y}{x\left(x-y\right)}\)
\(=\frac{x^2}{xy\left(x-y\right)}-\frac{y\left(2x-y\right)}{xy\left(x-y\right)}=\frac{x^2}{xy\left(x-y\right)}-\frac{2xy-y^2}{xy\left(x-y\right)}\)
\(=\frac{x^2-\left(2xy-y^2\right)}{xy\left(x-y\right)}=\frac{x^2-2xy+y^2}{xy\left(x-y\right)}=\frac{\left(x-y\right)^2}{xy\left(x-y\right)}=\frac{x-y}{xy}\)