Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x^2-5x+x+4}{x\left(x-2\right)}=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
b: \(=\dfrac{x^2-6x+9+4x^2+8x-4x^2-8x}{\left(x-3\right)\left(x+2\right)}\)
\(=\dfrac{x-3}{x+2}\)
a) \(=\dfrac{x\left(x-5\right)+x+4}{x\left(x-2\right)}=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
b) \(=\dfrac{\left(x-3\right)^2+4x\left(x+2\right)-8x-4x^2}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2-6x+9+4x^2+8x-8x-4x^2}{\left(x+2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-6x+9}{\left(x+2\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+2\right)\left(x-3\right)}=\dfrac{x-3}{x+2}\)
a) 2(x-1)2 - 4(x+3)2 + 2x(x-5)
= 2(x2 -2x +1)- 4(x2 + 6x +9) + 2x2 -10x
= 2x2 - 4x + 2 -4x2 - 24x - 36 + 2x2 - 10x
= (2x2 + 2x2 - 4x2) - (4x + 24x+10x) +(2-36)
= -38x-34
b) 2(2x+5)2 -3(4x+1)(1-4x)
= 2(4x2 + 20x + 25) + 3(4x+1)(4x-1)
= 8x2 +40x + 50 + 3(16x2 -1)
= 8x2 + 40x + 50 + 48x2 - 3
=56x2 +40x + 47
a, \(2\left(x-1\right)^2-4\left(x+3\right)^2+2x\left(x-5\right)\)
\(=2\left(x^2-2x+1\right)-4\left(x^2+6x+9\right)+2x\left(x-5\right)\)
\(=2x^2-4x+2-4x^2-24x-36+2x^2-10=-28x-44\)
b, \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)
\(=8x^2+40x+50-3+48x^2=56x^2+40x+47\)
a) (x-2)(x+2)-x(x-1)+8
= x2-4-x2+x+8
= (x2-x2)+(-4+8)+x
= 4+x
b) bn viết lại đề đi:v
đọc khó quá.
a) \(=6x^3+8x^2+2x-6x^3=8x^2+2x\)
b) \(=\left[3xy\left(xy+2xy^2-4\right)\right]:3xy=xy+2xy^2-4\)
c) \(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3}{x+2}-\dfrac{5}{x-2}=\dfrac{10x+3\left(x-2\right)-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
a, \(=6x^3+12x^2+2x-6x^3\\=12x^2+2x\)
b,
\(=xy+2xy^2-4\)
c,
\(\dfrac{10x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{5}{x-2}\)
\(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x-6}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{10x+3x-6-5x-10}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)
\(=x^2+x-10\)
a, \(\left(x^2-9\right)^2-\left(x-3\right)\left(x+3\right)\left(x^2+9\right)=\left(x^2-9\right)^2-\left(x^2-9\right)\left(x^2+9\right)\)
\(=x^4-18x^2+81-x^4+81=-18x^2+162\)
b, \(\left(x^2+x-3\right)\left(x^2-x+3\right)=\left[x^4-\left(x-3\right)^2\right]\)
\(=x^4-x^2+6x-9\)
\(a,\left(x-2\right).\left(x-3\right)-\left(x+3\right).\left(x-3\right)\)
\(=\left(x-3\right).\left(x-2-x+3\right)=x-3\)
\(b,\frac{\left(x^2+4x+4\right)}{x+2}-4x+5=\frac{\left(x+2\right)^2}{x+2}-4x+5\)
\(x+2-4x+5=-3x+7\)
a) \(\left(x-2\right)\left(x-3\right)-\left(x+3\right)\left(x-3\right)\)
\(=\left(x^2-5x+6\right)-\left(x^2-9\right)\)
\(=x^2-5x+6-x^2+9\)
\(=15-5x\)
b) \(\left(x^2+4x+4\right):\left(x+2\right)-\left(4x-5\right)\)
\(=\left(x+2\right)^2:\left(x+2\right)-\left(4x-5\right)\)
\(=\left(x+2\right)-4x+5\)
\(=x+2-4x+5\)
\(=7-3x\)