K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(\sqrt{4-\sqrt{9+4\sqrt{2}}}=\sqrt{4-\sqrt{1+2.2.\sqrt{2}+\left(2\sqrt{2}\right)^2}}\)

                                            \(=\sqrt{4-\sqrt{\left(1+2\sqrt{2}\right)^2}}\)

                                              \(=\sqrt{4-\left|1+2\sqrt{2}\right|}=\sqrt{4-1-2\sqrt{2}}=\sqrt{3-2\sqrt{2}}\)

                                                \(=\sqrt{1-2.\sqrt{2}.1+\left(\sqrt{2}\right)^2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)

Vậy ....

24 tháng 10 2021

\(=\dfrac{\sqrt{5}-2}{5-4}-\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}-2-\sqrt{5}-2=-4\)

a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(=2\sqrt{5}+2+\sqrt{5}-2\)

\(=3\sqrt{5}\)

b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)

\(=3-2\sqrt{2}+2\sqrt{2}-1\)

=2

c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

23 tháng 6 2017

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)

21 tháng 5 2023

a)

\(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}-\left(\sqrt{5}-2\right)\) (vì \(2+2\sqrt{5}>0;2-\sqrt{5}< 0\) )

\(=2+\sqrt{5}-\sqrt{5}+2\\ =4\)

b)

\(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)

\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\) (vì \(\sqrt{7}-1>0;\sqrt{7}+1>0\) )

\(=\sqrt{7}-1-\sqrt{7}-1\\ =-2\)

8 tháng 9 2023

\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)

\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)

\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)

\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)

\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)

\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)

\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)

\(B=-\left(5-36\right)\)

\(B=-\left(-31\right)\)

\(B=31\)

_____________________________

\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)

\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)

\(=3\sqrt{3}-\sqrt{3}+1\)

\(=2\sqrt{3}+1\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:
Gọi biểu thức trên là $A$

\(A^2=8+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)

\(=8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{(\sqrt{5}-1)^2}=8+2|\sqrt{5}-1|=6+2\sqrt{5}=(\sqrt{5}+1)^2\)

$\Rightarrow A=\sqrt{5}+1$ (do $A>0$)

 

6 tháng 7 2017

a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\) 

b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)

c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)

6 tháng 7 2017

câu b với câu c giải thích ra dùm e đc kh ạ?

13 tháng 9 2021

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{\sqrt{2}}{2}\right)\cdot3\sqrt{6}\\ =36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\\ =36-36\sqrt{2}+27\sqrt{3}\)