Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{9+2+6\sqrt{2}}-\sqrt{9+2-6\sqrt{2}}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
\(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\\ =\sqrt{9+8+6\sqrt{8}}+\sqrt{9+8-6\sqrt{8}}\\ =\sqrt{\left(3+\sqrt{8}\right)^2}+\sqrt{\left(3-\sqrt{8}\right)^2}\\ =3+\sqrt{8}+3-\sqrt{8}\\ =6\)
a) \(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{9-2.3.\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
b) \(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}=\sqrt{9+2.3.2\sqrt{2}+8}+\sqrt{9-2.3.2\sqrt{2}+8}=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left|3+2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|=3+2\sqrt{2}+3-2\sqrt{2}=6\)
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
@.@ Trời ơi, nhiều thế ^^
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)
\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)
b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
\(=\dfrac{5.\left(\sqrt{11}+\sqrt{6}\right)}{5}-\dfrac{2.\left(\sqrt{6}+2\right)}{2}+\dfrac{\sqrt{11}.\left(\sqrt{11}-1\right)}{1-\sqrt{11}}\)
= \(\sqrt{11}+\sqrt{6}-\sqrt{6}-2-\sqrt{11}\)
= -2
\(=\dfrac{5\left(\sqrt{11}+\sqrt{6}\right)}{\left(\sqrt{11}-\sqrt{6}\right)\left(\sqrt{11}+\sqrt{6}\right)}-\dfrac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\left(\sqrt{11}-1\right)}\)
\(=\dfrac{5\left(\sqrt{11}+\sqrt{6}\right)}{5}-\dfrac{2\left(\sqrt{6}+2\right)}{2}+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\left(\sqrt{11}-1\right)}\)
\(=\left(\sqrt{11}+\sqrt{6}\right)-\left(\sqrt{6}+2\right)+\sqrt{11}\)
\(=2\sqrt{11}-2\)
1. \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+\sqrt{84}\)= -6,423305878
2. \(\sqrt{150}+\sqrt{1,6}\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)= 24,79207036
NHA Vũ Hoàng Thiên An ! ! !
K VÀ KB NHA !
\(a,\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}\)
\(=|\sqrt{2}-3|.\sqrt{9+6\sqrt{2}+2}\)
\(=(3-\sqrt{2}).\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
\(=9-2=7\)
\(b,\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\frac{1}{3-\sqrt{3}}}\)
\(=\left(3-\sqrt{3}\right).\frac{\sqrt{1}}{\sqrt{3-\sqrt{3}}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3-\sqrt{3}}}\)
\(=\sqrt{3-\sqrt{3}}\)
\(c,-\frac{2}{3}\sqrt{\frac{\left(a-b\right)^3.b^5}{c}}.\frac{9}{4}\sqrt{\frac{c^3}{2\left(a-b\right)}}.\sqrt{98b}\)
\(=-\frac{2}{3}.\frac{\sqrt{\left(a-b\right)^3.b^5}}{\sqrt{c}}.\frac{9}{4}.\frac{\sqrt{c^3}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)
\(=-\frac{2}{3}.\frac{\left(a-b\right)b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{9}{4}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)
\(=-\frac{2}{3}.\frac{9}{4}.7.\frac{\left(a-b\right).b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.\sqrt{2b}\)
\(=-\frac{21}{2}.\left(a-b\right).b^2\sqrt{b}.c.\sqrt{b}\)
\(=\frac{-21}{2}.\left(a-b\right).b^3.c\)
\(d,\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}.2\sqrt{2}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\sqrt{2}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+4\sqrt{2}\right).2\sqrt{6}\)
\(=2.6-18\sqrt{2}+16\sqrt{3}\)
\(=12-18\sqrt{2}+16\sqrt{3}\)
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{9-2.3.\sqrt{2}+2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)