Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+.......+\frac{61}{\left(30.31\right)^2}\)
\(=\frac{1}{1^2.2^2}+\frac{1}{2^2.3^2}+....+\frac{1}{30^2.31^2}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{30}-\frac{1}{31}\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-......-\left(\frac{1}{30}-\frac{1}{30}\right)-\frac{1}{31}\)
\(=1-\frac{1}{31}\\ =\frac{31}{31}-\frac{1}{31}=\frac{30}{31}\)
no mình nha
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
Với \(n\ge1\)thì \(\frac{2n+1}{n^2\left(n+1\right)^2}=\frac{n^2+2n+1-n^2}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}-\frac{n^2}{n^2\left(n+1\right)^2}\)
Do đó \(S=\frac{3}{\left(1\cdot2\right)^2}+\frac{5}{\left(2\cdot3\right)^2}+...+\frac{4017}{\left(2008\cdot2009\right)^2}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{2008^2}-\frac{1}{2009^2}\)
\(=1-\frac{1}{2009^2}\)
sao bạn hôm đăng bài lớp 8 hôm thì đăng bài lớp 6 vậy
\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
a) \(2\frac{3}{4}\cdot\left(-0,4\right)-1\frac{3}{5}\cdot2,75+1,2:\frac{4}{11}\)
\(=2\frac{3}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}:\frac{4}{11}\)
\(=\frac{11}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}\cdot\frac{11}{4}\)
\(=\frac{11}{4}\left(-\frac{2}{5}-1\frac{3}{5}+\frac{6}{5}\right)\)
\(=\frac{11}{4}\left(-\frac{2}{5}-\frac{8}{5}+\frac{6}{5}\right)\)
\(=\frac{11}{4}\cdot\left(-\frac{4}{5}\right)=\frac{11}{1}\cdot\left(-\frac{1}{5}\right)=-\frac{11}{5}\)
b) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)....\left(\frac{1}{31}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{31}+\frac{31}{31}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{32}{31}\)
\(=\frac{3\cdot4\cdot5\cdot...\cdot32}{2\cdot3\cdot4\cdot...\cdot31}=\frac{32}{2}=16\)
c) Đặt \(C=1+2+3+...+30\)
Số số hạng là : \(\left(30-1\right):1+1=30\)(số)
Tổng của dãy số là : \(\frac{\left(1+30\right)\cdot30}{2}=465\)
Do đó : \(\frac{930}{C}=\frac{930}{465}=2\)
\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{61}{\left(30.31\right)^2}\)
\(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{61}{30^2.31^2}\)
\(S=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{61}{900.961}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{900}-\frac{1}{961}\)
\(S=1-\frac{1}{961}\)
\(S=\frac{960}{961}\)