\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

\(P=\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\dfrac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\dfrac{\left(\sqrt{5}+\sqrt{27}\right)\left(\sqrt{30}-\sqrt{162}\right)}{\left(\sqrt{30}+\sqrt{162}\right)\left(\sqrt{30}-\sqrt{162}\right)}\)

\(=\dfrac{\sqrt{6}\left(\dfrac{4\sqrt{3}}{3}-\sqrt{2}\right)}{3\left(\sqrt{2}-\dfrac{4\sqrt{3}}{3}\right)}-\dfrac{5\sqrt{6}-9\sqrt{10}+9\sqrt{10}-27\sqrt{6}}{30-162}\)

\(=\dfrac{-\sqrt{6}}{3}-\dfrac{-22\sqrt{6}}{-132}\)

\(=\dfrac{-\sqrt{6}}{3}-\dfrac{22\sqrt{6}}{132}\)

\(=\dfrac{-44\sqrt{6}}{132}-\dfrac{22\sqrt{6}}{132}=\dfrac{-66\sqrt{6}}{132}=\dfrac{-\sqrt{6}}{2}\)

5 tháng 9 2019

\(=\frac{3\sqrt{10}-2\sqrt{6}}{22}\)

5 tháng 9 2019

\( \dfrac{{2\sqrt 8 - \sqrt {12} }}{{\sqrt {18} - \sqrt {48} }} - \dfrac{{\sqrt 5 + \sqrt {27} }}{{\sqrt {30} - \sqrt {162} }}\\ = \dfrac{{4\sqrt 2 - 2\sqrt 3 }}{{3\sqrt 2 - 4\sqrt 3 }} - \dfrac{{\sqrt 5 + 3\sqrt 3 }}{{\sqrt {30} - 9\sqrt 2 }}\\ = \dfrac{{\left( {4\sqrt 2 - 2\sqrt 3 } \right)\left( {3\sqrt 2 + 4\sqrt 3 } \right)}}{{30}} - \dfrac{{\left( {\sqrt 5 + 3\sqrt 3 } \right)\left( {\sqrt {30} + 9\sqrt 2 } \right)}}{{ - 132}}\\ = - \dfrac{{\sqrt 6 }}{3} + \dfrac{{16\sqrt 6 + 9\sqrt {10} }}{{66}}\\ = \dfrac{{ - 22\sqrt 6 + 16\sqrt 6 + 9\sqrt {10} }}{{66}}\\ = \dfrac{{ - 6\sqrt 6 + 9\sqrt {10} }}{{66}}\\ = \dfrac{{3\left( { - 2\sqrt 6 + 3\sqrt {10} } \right)}}{{66}}\\ = \dfrac{{ - 2\sqrt 6 + 3\sqrt {10} }}{{22}} \)

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

Lời giải:

\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\frac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}.\sqrt{5}+\sqrt{6}.\sqrt{27}}\)

\(=\frac{2(2\sqrt{2}-\sqrt{3})}{\sqrt{6}(\sqrt{3}-2\sqrt{2})}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}(\sqrt{5}+\sqrt{27})}\)

\(=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}\)

b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)

\(=2\sqrt{5}-2-2\sqrt{5}\)

=-2

c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)

21 tháng 7 2018

\(a.\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=2\sqrt{5}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}-2}{1-\sqrt{5}}=\dfrac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\) \(b.\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}=\dfrac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6.5}+\sqrt{27.6}}=\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{17}\right)}=-\dfrac{\sqrt{2}}{\sqrt{3}}-\dfrac{1}{\sqrt{6}}=\dfrac{-2-1}{\sqrt{6}}=-\dfrac{\sqrt{3}}{\sqrt{2}}\)

21 tháng 9 2018

Mysterious Person giúp e với! Em cảm ơn!!!

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

21 tháng 7 2019

a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

\(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

= -2

b); c); d) làm tương tự

a) Ta có: \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\dfrac{-2\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{6}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)

\(=\dfrac{-3}{\sqrt{6}}=\dfrac{-3\sqrt{6}}{6}=\dfrac{-\sqrt{6}}{2}\)

b) Ta có: \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1-\sqrt{2}-\sqrt{3}\right)\)

\(=1-\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(=1-5-2\sqrt{6}\)

\(=-4-2\sqrt{6}\)

Ta có: \(P=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

\(=\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{-\sqrt{6}\left(\sqrt{8}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)

\(=\frac{-\sqrt{2}}{\sqrt{3}}-\frac{1}{\sqrt{6}}\)

\(=\frac{-2-1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=\frac{-\sqrt{3}}{\sqrt{2}}\)

27 tháng 5 2021

\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}=\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(\sqrt{24}-3\right)^2}=\left|3-\sqrt{6}\right|+\left|\sqrt{24}-3\right|=3-\sqrt{6}+\sqrt{24}-3=2\sqrt{6}-\sqrt{6}=\sqrt{6}\)

27 tháng 5 2021

\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}=-\dfrac{\sqrt{2}\left(\sqrt{6}-4\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\dfrac{-\sqrt{2}}{\sqrt{3}}-\dfrac{1}{\sqrt{6}}=\dfrac{-\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\).