Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{11}{15}+\frac{23}{16}-\left(5+\frac{27}{16}-\frac{19}{15}\right)+\left(\frac{-1}{2}\right)^2\)
\(=\frac{11}{15}+\frac{23}{16}-5-\frac{27}{16}+\frac{19}{15}+\frac{1}{4}\)
\(=\left(\frac{11}{15}+\frac{19}{15}\right)+\left(\frac{23}{16}-\frac{27}{16}\right)-5+\frac{1}{4}\)
\(=\frac{30}{15}-\frac{4}{16}-5+\frac{1}{4}\)
\(=2-\frac{1}{4}-5+\frac{1}{4}\)
\(=-3\)
học tốt ngôlãmtân
\(\frac{11}{15}+\frac{23}{16}-\left(5+\frac{27}{16}-\frac{19}{15}\right)+\left(-\frac{1}{2}\right)^2\) = \(\frac{11}{15}+\frac{23}{16}-5-\frac{27}{16}+\frac{19}{15}+\frac{1}{4}\)
\(=2-\frac{1}{4}-5+\frac{1}{4}=2-5=-3\)
Kb với mình nha!
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)
a)\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5=2,5\)
b)\(\frac{3}{7}\cdot19\frac{1}{3}-\frac{3}{7}\cdot33\frac{1}{3}\)
\(=\frac{3}{7}\left(19\frac{1}{3}-33\frac{1}{3}\right)=\frac{3}{7}\cdot\left(-14\right)=-6\)
c) \(9\left(-\frac{1}{3}\right)^3+\frac{1}{3}=9\cdot\left(\frac{-1}{27}\right)+\frac{1}{3}=-\frac{1}{3}+\frac{1}{3}=0\)
d) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)=-\frac{7}{5}:\left(15\frac{1}{4}-25\frac{1}{4}\right)=-\frac{7}{5}:\left(-10\right)=14\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\frac{27}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(\frac{27}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2,5\)
b) \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\frac{58}{3}-\frac{3}{7}.\frac{100}{3}\)
\(=\frac{3}{7}.\left(\frac{58}{3}-\frac{100}{3}\right)\)
\(=\frac{3}{7}.\left(-14\right)\)
\(=-6\)
c) \(9.\left(-\frac{1}{3}\right)^3+\frac{1}{3}\)
\(=9.\left(-\frac{1}{27}\right)+\frac{1}{3}\)
\(=-\frac{1}{3}+\frac{1}{3}\)
\(=0\)
d) \(15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\frac{61}{4}:\left(-\frac{5}{7}\right)-\frac{101}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(\frac{61}{4}-\frac{101}{4}\right):\left(-\frac{5}{7}\right)\)
\(=\left(-10\right):\left(-\frac{5}{7}\right)\)
\(=14\)
^...^ ^_^
\(\frac{15\frac{1}{4}}{-\frac{5}{7}}-\frac{25\frac{1}{4}}{-\frac{5}{7}}=\frac{15\frac{1}{4}-25\frac{1}{4}}{-\frac{5}{7}}=\frac{-10}{-\frac{5}{7}}=10\cdot\frac{7}{5}=14\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5=1+1+0,5=2,5\)
\(a.=\frac{3}{15}+\frac{-10}{15}\)
\(=-\frac{7}{15}\)
\(b.=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
\(c.=\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
\(=-1+1-\frac{1}{2}\)
\(=0-\frac{1}{2}\)
\(=-\frac{1}{2}\)
\(d.=\frac{5}{6}.\left(18\frac{2}{3}-6\frac{2}{3}\right)\)
\(=\frac{5}{6}.12\)
\(=10\)
Mẫu số = \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2012}\)
\(=1+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2012\right).2012:2}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2012.2013}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(=2.\left(1-\frac{1}{2013}\right)=\frac{2.2012}{2013}\)
Phân số đề bài cho = \(\frac{2.2012}{\frac{2.2012}{2013}}=2013\)
Đặt BT là A
\(\Rightarrow A=2016-\left(\frac{1}{1.2.6}+\frac{1}{2.3.6}+\frac{1}{3.4.6}+....+\frac{1}{19.20.6}\right)\)
\(\Rightarrow A=2016-\frac{1}{6}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{19}-\frac{1}{20}\right)\)
\(\Rightarrow A=2016-\frac{1}{6}\left(1-\frac{1}{20}\right)\)
\(A=2016-\frac{1}{6}.\frac{19}{20}=2016-\frac{19}{120}=\frac{241901}{120}\)